

Home Search Collections Journals About Contact us My IOPscience

Nonvolatile memory properties of Pt nanoparticle-embedded TiO₂ nanocomposite multilayers via electrostatic layer-by-layer assembly

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 Nanotechnology 21 185704 (http://iopscience.iop.org/0957-4484/21/18/185704) The Table of Contents and more related content is available

Download details: IP Address: 210.123.37.194 The article was downloaded on 12/04/2010 at 03:05

Please note that terms and conditions apply.

Nanotechnology 21 (2010) 185704 (7pp)

Nonvolatile memory properties of Pt nanoparticle-embedded TiO₂ nanocomposite multilayers via electrostatic layer-by-layer assembly

Chanwoo Lee¹, Inpyo Kim¹, Hyunjung Shin¹, Sanghyo Kim² and Jinhan Cho¹

 ¹ School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Korea
 ² College of BioNano Technology, Kyungwon University, San 65, Bokjeong-dong, Sujeong-gu, Kwonggi-do 461-701, Korea

E-mail: jinhan@kookmin.ac.kr

Received 13 January 2010, in final form 6 March 2010 Published 9 April 2010 Online at stacks.iop.org/Nano/21/185704

Abstract

It is demonstrated that notable resistive switching memory properties depending on voltage polarity (i.e. bipolar switching properties) can be obtained from the layer-by-layer (LbL) assembled multilayers based on transition metal oxides and metal nanoparticles. Cationic poly(allylamine hydrochloride) and anionic titania precursor layers were deposited alternately onto Pt-coated Si substrates using an electrostatic LbL assembly process. Anionic Pt nanoparticles (Pt_{NP}) with about 5.8 nm diameter size were also inserted within the multilayers using the same interactions mentioned above. These multilayers were converted to Pt_{NP} -embedded TiO₂ films by thermal annealing and the films were then coated with a top electrode. When external bias was applied to the devices, bipolar switching properties were observed at low operating voltages showing the high ON/OFF ratio (>10⁴) and the stable device performance. These phenomena were caused by the presence of Pt_{NP} inserted within TMO films.

S Online supplementary data available from stacks.iop.org/Nano/21/185704/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Resistive switching nonvolatile memory (RSM) devices with capacitor type in the metal–insulator–metal structure have attracted considerable interest due to the widespread use of mobile electronics such as MP3 players, digital cameras and mobile phones [1–16]. In particular, it has been reported that RSM devices based on transition metal oxides (TMOs) have excellent memory performance, such as large ON/OFF ratio $>10^3$, fast switching speed and low operating voltage in spite of the simple device structure and chemical composition. Generally, binary TMOs [1–4, 8, 9] such as TiO₂ or NiO are used as resistance switching materials

exhibiting a significant change in resistance between the high resistance state and low resistance state under applied voltage sweep. Recently, many efforts have been made to modify or improve the electrical properties of RSM devices through the insertion of electrically functional components within TMO matrices [12–15]. However, the vacuum deposition process used for preparation of TMO has great difficulty in building large-area devices at low cost with a simplified manufacturing process and easily inserting a variety of electrically active components (i.e. metal or inorganic nanoparticles) within TMO matrices, although TMO materials have excellent thermal stability and operating durability in air environment. As an alternative, soluble polymers may be considered to be

promising candidates for the active layers in future nonvolatile memory devices because they can be deposited by facile solution processes such as spin-coating [17–20].

One of the proposed models for resistive switching is that electronic charges are injected by Fowler-Nordheim tunneling at high electric fields and subsequently trapped at sites such as defects (i.e. grain boundaries, residual carbons or oxygen deficiency states) in the insulators. Therefore, the memory effect with the high and low current states can occur from charge storage (high resistance) and release (low resistance) within the charge trap sites, and furthermore a degree of charge storage and release can have a significant effect on current ON/OFF ratio and device stability. This model suggested to us intriguing new possibilities for designing RSM devices with improved memory properties. The key to these design schemes is based on an electrostatic layer-by-layer (LbL) assembly process [21-33], which is quite useful for preparing nanocomposite multilayer films with tailored nanostructures as well as the insertion of various functional components. This approach is achieved by tuning the electrostatic interactions between oppositely charged components. More specifically, anionic titanium(IV) bis(ammonium lactato)dihydroxide (TALH) as a titania precursor can be electrostatically assembled with cationic poly(allylamine hydrochloride) (PAH), allowing the formation of multilayers [30–32], and furthermore negatively charged Pt nanoparticles (Pt_{NPs}) can be easily inserted within TALH/PAH multilayers using the same LbL solution process. The subsequent thermal treatment of the resulting multilayers can yield the TiO₂ nanocomposite films with Pt_{NP} layers at defined placement via thermal decomposition of organic components.

Herein, we demonstrate that RSM devices based on Pt_{NP}embedded TiO₂NC has a bipolar switching property depending on the polarity of the applied voltage with low operating voltages, large ON/OFF ratios ($\sim 10^4$), long retention times and excellent environmental stability. On the other hand, TiO₂NC devices without Pt_{NPs} exhibited unstable bipolar switching behavior with a relatively low ON/OFF ratio (<10). These evident differences in electrical performance between TiO2NC-and PtNP-embedded TiO2NC were caused by the presence of metal nanoparticles operating as deep charge trap sites, which were confirmed from the changes in real-space imaging of the charge trap and release state as a function of time. This work is significant because it provides a tool for easily constructing RSM devices based on solution-processible inorganic multilayers with flexible switching properties. We also believe that our approach can be effectively used for many potential electronic applications requiring high performance, long durability, large-area scale and low fabrication cost in air environment.

2. Experimental part

2.1. Preparation of TiO_2 nanocomposite films from Pt_{NP} -embedded (PAH/TALH)_n multilayers

The concentration of PAH ($M_w = 70\,000$, Aldrich) and TALH (Aldrich) solutions used for all the experiments was 1 and

50 mg ml⁻¹ [32]. Pt-coated Si substrates had an anionic surface by irradiating UV light. These substrates were first dipped for 10 min in the cationic PAH solution (containing 0.5 M NaCl), washed twice by dipping in water for 1 min and air-dried with a gentle stream of nitrogen. Anionic TALH was subsequently deposited onto the PAH-coated substrates by using the same adsorption, washing and drying procedures as described above. In addition, the anionic Pt_{NP} stabilized by citrate ions was inserted within (PAH/TALH)_n multilayers. The resultant multilayer films were thermally annealed at 450 °C for 2 h under nitrogen and additionally annealed at the same temperature for 2 h under oxygen conditions.

2.2. QCM measurements

A QCM device (QCM200, SRS) was used to investigate the mass of material deposited after each adsorption step. The resonance frequency of the QCM electrodes was approx. 5 MHz. The adsorbed mass of PAH and TALH, Δm , can be calculated from the change in QCM frequency, ΔF , according to the Sauerbrey equation: ΔF (Hz) = $-56.6\Delta m_A$, where Δm_A is the mass change per quartz crystal unit area in $\mu g \text{ cm}^{-2}$.

2.3. Surface morphology

The surface morphology and roughness of thermally annealed TiO_2NC onto Si substrates were measured with an atomic force microscope (AFM) in tapping mode (SPA400, SEIKO).

2.4. Crystal structure

The crystal structure of LbL TiO₂ NC was investigated using x-ray diffraction (XRD) at room temperature. Data collection was performed in the 2θ range from 15° to 60° using Cu K α radiation ($\lambda = 1.54$ Å, Model: Bruker D8 Discover, Germany). Cross-sectional TEM (Model: JEOL 300kV) was also used to investigate the TiO₂ crystal structure and the internal structure of nanocomposite multilayers.

2.5. Fabrication of resistive switching memory devices

All the samples were prepared on Si substrates $(2 \text{ cm} \times 2 \text{ cm})$ with an SiO₂ layer of about 100 nm thickness. A Ti layer of 20 nm thickness was then deposited on the substrates and a bottom electrode (Pt) was subsequently deposited using a DC-magnetron sputtering system. The $(PAH/TALH)_n$ multilayer films were then formed on the Pt-coated Si substrates. The resultant multilayer films were thermally annealed at 450 °C for 2 h under nitrogen and additionally annealed at the same temperature for 4.5 h under oxygen conditions. After thermal conversion, top electrodes (Ag) with 100 μ m diameter were deposited onto the nanocomposite films. To investigate the resistive switching behavior of LbL multilayered devices, the current-voltage (I-V) curves were measured by a semiconductor parametric analyzer (SPA, Agilent 4155B) in air environment. The pulsed voltage duration dependence of high and low current states was investigated using a semiconductor parametric analyzer (HP 4155A) and pulse generator (Agilent 81104A).

Figure 1. (a) UV–vis spectra of $(PAH/TALH)_n$ multilayers measured with increasing bilayer number (*n*). The inset of (a) shows the absorbance of TALH measured at 241 nm as a function of bilayer number. (b) XRD patterns of $(PAH/TALH)_n$ multilayers (A) before and (B) after thermal annealing at 450 °C.

3. Results and discussion

For the preparation of Pt_{NP} -embedded nanocomposite multilayers, a cationic PAH, anionic titanium(IV) bis(ammonium lactato)dihydroxide (TALH) and citrate ion-stabilized Pt_{NP} of approximately 6 nm size were used (see supporting information, figure S1, available at stacks.iop.org/Nano/ 21/185704/mmedia). Anionic Pt nanoparticles (Pt_{NP}) were synthesized as follows [34]: 250 ml of 1.79 mM H₂Cl₆Pt · 6H₂O was maintained at room temperature with vigorous stirring. Rapid addition of 20 ml of 68 mM sodium citrate to the vortex of the solution and successive addition (1 ml) of 70 mM NaBH₄ resulted in a color change from dark yellow to dark brown. The diameter of synthesized Pt_{NP} was about 5.8 ± 1 nm (100 particles sampled) as confirmed by transmission electron microscopy (TEM) images.

First, the LbL assembly of PAH and TALH was performed on quartz substrates, and the growth of the multilayers was monitored by UV-vis spectroscopy. The uniform increase in the intensity of the absorbance peak at 241 nm (due to TALH) suggests that a regular amount of TALH was adsorbed per bilayer, demonstrating PAH/TALH multilayer growth (figure 1(a)). The inset in figure 1(a) shows that the absorbance at 241 nm increased linearly with increasing bilayer number of PAH/TALH. Based on this electrostatic LbL assembly, anionic Pt_{NP} were inserted within the PAH/TALH multilayers. In particular, electrostatic repulsion between the same charged Pt_{NPs} could induce the adsorption of dispersed Pt_{NPs} onto the positively charged PAH-coated substrate, allowing these nanoparticles to be used as isolated charge trap elements. These multilayers could be converted easily to Pt_{NP}-TiO₂ multilayer films by thermal degradation of the organic components when annealed at 450 °C. The fully thermal decomposition of organic compounds in the films was confirmed from thermogravimetric analysis (see supporting information, figure S2, available at stacks.iop.org/Nano/21/ 185704/mmedia). In this case, the total film thickness of the multilayers was reduced to approximately 53% of the initial film thickness and the formed TiO₂ nanocomposites showed a strong growth of a typical anatase (004) plane peak and relatively weak rutile crystal (210) plane peak, as confirmed by x-ray diffraction (XRD) patterns (figure 1(b)) [32].

Based on these results, three types of TiO₂ nanocomposite (TiO₂NC) devices were prepared with increasing amounts of Pt_{NP} inserted within the nanocomposite, as shown in figure 2. The total thicknesses of these multilayers were approximately 40 nm for (TiO₂NC)₃₀ and [(TiO₂NC)₁₂(Pt_{NP})₁]₂/(TiO₂NC)₄, and 50 nm for [(TiO₂NC)₃/(Pt_{NP})₁]₇/(TiO₂NC)₂ films. In this case, the total Pt_{NP} number densities of [(TiO₂NC)₁₂(Pt_{NP})₁]₂/(TiO₂NC)₄ and [(TiO₂NC)₃/(Pt_{NP})₁]₇/(TiO₂NC)₂ films were measured to be 3.7×10^{12} cm⁻² and 1.3×10^{13} cm⁻², respectively. (The density, volume and mass per one Pt_{NP} were 21.5 g cm⁻³, 1.0×10^{-19} cm³ and 2.2×10^{-18} g, respectively. In addition, the frequency and mass change per Pt_{NP} layer were about 230 Hz and $4.1 \,\mu g \, \text{cm}^{-2}$.)

For measurements of typical bipolar switching, a top Ag electrode was deposited onto the resulting multilayers and a voltage sweep from -2 to +2 V and back to -2 V was applied after an electroforming process at approximately 2.5 V with limited current compliance up to 100 mA. When the voltage polarity applied to the nanocomposite devices was reversed, the high current state (scan range $> \pm 2$ V) that had formed after electroforming was converted suddenly to a low current state at +1.5 V (i.e. RESET voltage) (figure 3). When the applied voltage was increased from +2 to -2 V (e.g. regions (3) and (4)), the device with the low current state ('OFF' state) showed an abrupt increase in current of approximately -1.9 V (i.e. SET voltage). It should be noted that the $[(TiO_2NC)_{12}/(Pt_{NP})_1]_2/(TiO_2NC)_4$ devices exhibited significant bipolar switching behavior with high ON/OFF ratio $>10^4$ compared to the $(TiO_2NC)_{30}$ devices, which showed poor and unstable nonvolatile characteristics with relatively low ON/OFF current ratio <10. This bipolar switching phenomenon was also observed in the voltage

Figure 2. Schematic and TEM images for Pt_{NP} -embedded TiO₂NC multilayers with three different structures. (A) (TiO₂NC)₃₀, (B) [(TiO₂NC)₁₂(Pt_{NP})₁]₂/(TiO₂NC)₄ and (C) [(TiO₂NC)₃/(Pt_{NP})₁]₇/(TiO₂NC)₂.

sweep from +2 to -2 V and back to +2 V. In view of the practical device applications, the electrical stability of the $[(TiO_2NC)_{12}/(Pt_{NP})_1]_2/(TiO_2NC)_4$ device was also comparable to that of the conventional vacuum-deposited devices. The ON and OFF states of the device at two different reading voltages of ± 0.1 V were kept continuously stable during the entire test period of 10^4 s under atmospheric conditions (figure 3(b)). This device was operated at an applied voltage pulse (+4 V for SET and -1 V for RESET) with a 100 ns pulse width (figure 3(c)). The slight increase in the ON/OFF current ratio was caused by the increase pulsed voltage duration from 100 ns to 1 ms. However, the stable bipolar switching behavior of the Pt_{NP}-inserted devices was strongly dependent on the amount of Pt_{NP} inserted within the nanocomposite multilayers. The further insertion of Pt_{NP} layers (more than three Pt_{NP} layers) yielded electrically shorted devices. In other words, the [(TiO₂NC)₃/(Pt_{NP})₁]₇/(TiO₂NC)₂ multilayer structure with a particle number density of 1.3 \times 1013 cm⁻² showed metallic properties without resistive switching. (The particle number density was calculated from the particle size, density and adsorbed mass per unit area measured from a quartz crystal microbalance.)

According to the Simmons–Verderber model [34], the memory effect with the high and low current states was due to charge storage (high resistance) and release (low resistance) within the charge trap sites. In this system, the Pt_{NP} within the TiO₂NC matrix can be used as charge trap elements, which can affect the switching mechanism considerably. First, after initial electroforming, the negative voltage sweep of devices from -2 to 0 V releases the electrons from Pt_{NPs} (e.g. (1)). When electrons are partially injected in Pt_{NP} (e.g. (2)) and trapped in Pt_{NP} by reversing the voltage polarity (e.g. (2) \rightarrow (3)), the conductive filament paths for electrons in the TiO₂NC

matrix are broken down, resulting in a decrease in conductivity, corresponding to the RESET process. This state is maintained up to about -1.9 V (e.g. region (4)). However, an increase of external electric field for releasing the trapped electrons within Pt_{NPs} (e.g. region (4)) is thought to sharply increase the conductivity at SET voltage (i.e. $V_{\text{SET}} \approx -1.9$ V) enhancing tunneling probability (i.e. SET process). These processes are repeated reversibly. However, the proposed mechanism has a difficulty in understanding electron transport in the TiO₂ matrix. Recently, a memristive mechanism of TiO₂ has been reported extensively from mainly Hewlett-Packard labs [8, 9]. That is, the oxygen vacancies repelled or attracted from the top electrode according to the electric field can be drifted, and as a result may have a significant effect on the electronic barrier for electron transport at the interface between electrode and TiO_2 . In this view, the bipolar switching behavior of TiO_2NC without Pt_{NPs} can be understood by a memristor model. On the other hand, in the case of Pt_{NP}-embedded TiO₂NC showing relatively high ON/OFF current ratio, their switching behavior can be influenced by the electron trap within Pt_{NPs} as well as the electron transport in the TiO_2 matrix, as mentioned above.

Considering that a variety of defects, such as oxygen vacancies, dislocations and grain boundaries, can be used as charge trap sites, the Pt_{NP} in the TiO₂NC matrix can operate as a relatively deep charge trap site. In order to test this possibility, Kelvin force microscopy (KFM) was used to examine the changes in real-space imaging of the charge trap and release state as a function of time as previously reported by our group [35]. The charges stored within each Pt_{NPs} could be detected from the change in surface potential when the tip (i.e. Au-coated tip with 20 nm diameter) of the KFM scans the surface of the TiO₂ layer covering the Pt_{NPs} . First, a $1.5 \times 1.5 \ \mu m^2$ area of TiO₂ and Pt_{NP} -inserted TiO₂ films was

Figure 3. (a) I-V curves of TiO₂NC multilayers with different Pt_{NP} layer number and without Pt_{NP}. After initial electroforming process (current compliance of 100 mA), the applied voltage was scanned from -2 to 2 V and then reversed from 2 to -2 V. (b) Retention time test of $[(TiO_2NC)_{12}/(Pt_{NP})_2]_3/(TiO_2NC)_4$ multilayer device. The high and low conductive states were induced using reading voltages of +0.1 V (positive sweep) and -0.1 V (negative voltage sweep). (c) The ON current values at 4 V and OFF current values at -1 V for different pulse widths (100 ns, 1 μ s, 10 μ s and 100 μ s) using reading voltages of ± 0.1 V.

scanned at -8 V and -4 V for the charge trap, respectively. After that, the charge release operation was successively performed by scanning a $500 \times 500 \text{ nm}^2$ area with a +8 V (for the TiO₂ device) and +4 V bias (for the Pt_{NP}-inserted TiO₂ device) applied to the bottom contact. As shown in figure 4, the vellow region indicates a charge trap state and the dark region corresponds to the charge release state. Although the TiO₂ and Pt_{NP}-TiO₂ films had charge trap sites, as shown by the color contrast (i.e. potential difference between the charge trap and charge release state), there was a clear difference in charge trap depth between the diffuse (for TiO2NC) and charge trap images (for Pt_{NP} -inserted TiO₂NC), according to the presence of Pt_{NP} . If -4 V and +4 V were applied to the TiO₂ device for charge trap and release, respectively, the diffuse images of KFM would have considerable difficulty in distinguishing between the charge trap and release state due to their shallow trap sites. In addition, the charge stored state of the TiO_2 film device decayed rapidly (70% decrease in color contrast after 30 min) compared to that of the Pt_{NP}-inserted TiO₂ film device (50% decrease in color contrast after 90 min). On the other hand, we did not observe any notable change in topographic images with increasing time. This suggests that the Pt_{NP} in TiO₂ films can operate effectively as deep charge trap elements. It

should be noted here that the retention test shown in figure 3(b)cannot be directly made a comparison with charge trap decay in KFM analysis because the surface environment of the TiO₂ nanocomposite is totally different. More specifically, the oxide surface for the retention test was sandwiched between two metal electrodes, which can block the formation of a contaminant layer (i.e. surface water layer or surface hydroxyl group) onto the oxide surface. On the other hand, the oxide surface for KFM analysis was exposed to the air. Sugimura et al reported that the increase of surface hydroxyl groups on the oxide layer decreases the potential contrast in KFM images [36]. Therefore, charge trap decay analysis of Pt_{NP}embedded TIO2NC cannot be quantitatively compared with the retention test of Pt_{NP}-embedded TiO₂NC sandwiched between metal electrodes, and the relative comparison in KFM images of the two different devices can be allowed.

Even if it was reported that solid electrolytes sandwiched between an Ag (or Cu) anode and an inert cathode can cause bipolar switching behavior via an electrochemical redox reaction based on the high mobility of Ag ions [37], and furthermore metal ion diffusion from the top electrode can form localized metal atom chains that bridge the electrode materials under an electric field [38–40], our device also

Figure 4. KFM images of (a) TiO_2NC -and (b) Pt_{NP} -inserted TiO_2NC devices as a function of time. (c) Degree of charge trap decay in TiO_2NC -and Pt_{NP} -inserted TiO_2NC devices. In this case, the degree of charge trap decay was measured by the color contrast between charge trap and charge release states.

showed bipolar switching behavior from the tungsten top electrode. This phenomenon suggests that the Ag electrode itself has no significant effect on the resistive switching behavior of LbL TiO_2NC with Pt_{NP} .

4. Conclusions

We demonstrated that RSM devices based on TMO and metal nanoparticles could be easily prepared from the LbL assembly

(a)

process and the selective insertion of Pt_{NP} in the center of TMO matrices could significantly improve the ON/OFF ratio and device stability. The notable switching property in our system can be explained by the presence of isolated but homogeneous Pt_{NP} operating as deep charge trap sites. In particular, the changes in real-space imaging of the charge trap and release state as a function of time evidently indicated the difference of charge trap decay between the shallow trap state in TiO₂NC, and as a result support our switching mechanism. We also highlight the fact that our approach allows the production of resistive switching active films with large-area and hybrid structures using a simplified solution process.

Acknowledgments

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (2009-0058617), the 'SystemIC2010' project of Korea Ministry of Commerce Industry and Energy, the ERC Program of KOSEF grant funded by the Korean Government (R11-2005-048-00000-0), the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-2-D00264) and the NRL (R0A-2007-000-20105-0) program.

References

- [1] Waser R and Aono M 2007 Nat. Mater. 6 833
- [2] Choi D, Lee D, Sim H, Chang M and Hwang H 2006 Appl. Phys. Lett. 88 082904
- [3] Rozenberg M J, Inoue I H and Sánchez M J 2004 Phys. Rev. Lett. 92 17802
- [4] Sánchez M J, Rozenberg M J and Inoue I H 2006 Appl. Phys. Lett. 88 033510
- [5] Weitz R T, Walter A, Engl R, Sezi R and Dehm C 2006 Nano Lett. 6 2810
- [6] Schoen D T, Xie C and Cui Y 2007 J. Am. Chem. Soc. 129 4116
- [7] Jung Y, Lee S-H, Ko D-K and Agarwal R 2006 J. Am. Chem. Soc. 128 14026
- [8] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
- [9] Yang J J, Pickett M D, Li X, Ohlberg D A A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
- [10] Barman S, Deng F and McCreery R C 2008 J. Am. Chem. Soc. 130 11073

- [11] Kozicki M N, Yun M, Hilt L and Singh A 1999 Solid State Ionic Devices: Proc. Int. Symp. (Pennington, NJ: Electrochemical Society) p 298
- [12] Chang W-Y, Cheng K-J, Tsai J-M, Chen H-J, Chen F, Tsai M-J and Wu T B 2009 Appl. Phys. Lett. 95 042104
- [13] Kim D C et al 2006 Appl. Phys. Lett. 88 202102
- [14] Liu L F, Kang J F, Xu N, Sun X, Chen C, Sun B, Wang Y, Liu X Y, Zhang X and Han R Q 2008 Japan. J. Appl. Phys. 47 2701
- [15] Guan W, Long S, Jia R and Liu M 2007 Appl. Phys. Lett. 91 062111
- [16] Lee C, Kim I, Choi W, Shin H and Cho J 2009 Langmuir 25 4274
- [17] Ouyang J, Chu C-W, Szmanda C R, Ma L and Yang Y 2004 Nat. Mater. 3 918
- [18] Joo W-J, Choi T-L, Lee J, Lee S K, Jung M-S, Kim N and Kim J M 2006 J. Phys. Chem. B 110 23812
- [19] Lauters M, McCarthy B, Sarid D and Jabbour G E 2006 Appl. Phys. Lett. 89 013507
- [20] Beinhoff M, Bozano L D, Scott J C and Carter K R 2005 Macromolecules 38 4147
- [21] Decher G 1997 Science 277 1232
- [22] Caruso F, Caruso R A and Möwald H 1998 Science 282 1111
- [23] Podsiadlo P et al 2007 Science 318 80
- [24] Shiratori S S and Rubner M F 2000 Macromolecules 33 4213
- [25] Dubas S T, Farhat T R and Schlenoff J B 2001 J. Am. Chem. Soc. 123 5368
- [26] Yoo P J, Nam K T, Qi J, Lee S-K, Park J, Belcher A M and Hammond P T 2006 Nat. Mater. 5 234
- [27] Lee S W, Kim B-S, Chen S, Yang S-H and Hammond P T 2009 J. Am. Chem. Soc. 131 671
- [28] Jiang G, Baba A and Advincula R 2007 Langmuir 23 817
- [29] Das B C, Batabyal S K and Pal A J 2007 Adv. Mater. 19 4172
- [30] Caruso F, Shi X, Caruso R A and Susha A 2001 *Adv. Mater.* 13 740
- [31] Caruso R A, Susha A and Caruso F 2001 Chem. Mater. 13 400
- [32] Lee C, Kim I, Shin H, Kim S and Cho J 2009 Langmuir 25 11276
- [33] Park J, Kim I, Shin H, Lee M J, Kim Y S, Bang J, Caruso F and Cho J 2008 Adv. Mater. 20 1843
- [34] Simmons J G and Verderber R R 1967 Proc. R. Soc. 301 77
- [35] Lee J-S, Cho J, Lee C, Kim I, Park J, Kim Y-M, Shin H, Lee J and Caruso F 2007 Nat. Nanotechnol. 2 790
- [36] Sugimura H, Ishida Y, Hayashi K, Takai O and Nakagiri N 2002 Appl. Phys. Lett. 80 1459
- [37] Terabe K, Hasegawa T, Nakayama T and Aono M 2005 Nature
 433 47
- [38] Tsunoda K, Fukuzumi Y, Jameson J R, Wang Z, Griffin P B and Nishi Y 2007 Appl. Phys. Lett. 90 113501
- [39] Lee D, Seong D-J, Jo I, Xiang F, Dong R, Oh S and Hwang H 2007 Appl. Phys. Lett. 90 122104
- [40] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 *Nano Lett.* 9 1636