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Supporting Experimental Data
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Fig. S1. TEM images and size distribution histogram of (a) OA-Fe3O4 NPs and (b) TOABr-Pd NPs. TEM images of OA-Fe3O4 NPs and TOABr-Pd NPs show the spacing of the lattice fringes (2.98 Å) of Fe3O4 NPs and the spacing of the lattice fringes (2.21 Å) which corresponds to the Fe3O4 (220) and Pd (111) crystalline planes [Ref. S1, S2].



[image: C:\Users\yoon\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Pristine.png]












Fig. S2. ATR-FTIR spectra of pristine PEI, OA-Fe3O4 NPs, and TOABr-Pd NPs.
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Fig. S3. (a) ATR-FTIR and (b) Raman spectra of GONs and PEI-coated GON. In the case of GONs measured by ATR-FTIR spectroscopy, we observed noticeable absorption peaks (i.e., C=O stretching at 1725 and 1621 cm-1, O-H bending at 1415 cm-1, and C-O stretching at 1065 cm-1) originating from the carboxylic acid groups of GON (Fig. S1a). However, when the PEI was adsorbed onto the GONs, the absorption peak intensity of the N-H bending (at 1500~1650 cm-1), C-H stretching (at 2911 and 2828 cm-1) by alkyl chains of PEI and C-N stretching (at 1000~1300 cm-1) was significantly increased. 
In the case of Raman spectra, PEI-coated GON (Fig. S1b), the intensity ratio between the D (1349 cm-1, sp3 carbon atoms of the defect structure) and G (1593 cm-1, sp2 carbon atoms in a graphitic 2D hexagonal lattice) band peaks of PEI-coated GON was slightly increased compared to that of GONs, which implied an increase in defects on both sides of GONs due to the PEI deposition [Ref. S3].
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Fig. S4. Dispersion stability of GONs in various solvents before and after PEI deposition.
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Fig. S5. Digital images of the dispersion stability of (a) GON/PEI/OA-TiO2 NP, (b) GON/PEI/OA-Ag NP, and (c) GON/PEI/OA-Pt NP hybrids in toluene and hexane and after PEI deposition in water and ethanol.
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Fig. S6. (a) EDX analysis and mapping data for C (b), Fe (c), and Pd (d); (e) XRD pattern of GON-3 (i.e., GON/PEI/OA-Fe3O4 NP/PEI/TOABr-Pd NP). The XRD peaks at 30.1, 35.5, 43.1, 53.7, 57.1, and 62.9° are ascribed to the (220), (311), (400), (422), (511), and (440) reflections of Fe3O4 NPs, respectively [Ref. S3-S5]. Additionally, the peak observed at 39.5° correspond to the (111) diffractions of crystalline Pd (0) [Ref. S4-S6].
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Fig. S7. The magnetism curve of GON-3 (i.e., GON/PEI/OA-Fe3O4 NP/PEI/TOABr-Pd NP) collected by SQUID magnetometry (a) at room temperature and (b) at 5 K. At room temperature, GON-3 exhibited superparamagnetic behavior, whereas at liquid helium temperature (T = 5 K), the thermally activated magnetization-flipping properties of the nanosheets revealed frustrated superparamagnetic properties. Additionally, the temperature dependence of zero-field-cooling (ZFC) and field-cooling (FC) magnetization was measured using 150 Oe. (c) The blocking temperature (TB), which begins to show deviation between zero-field-cooling (ZFC) and field-cooling (FC) magnetization, was fixed to approximately 50 K. The TB of 8 nm Fe3O4 NPs has been reported to be approximately 50 K [Ref. S7]. 
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Fig. S8. The magnetism curve of GON-1 (i.e., GON/PEI/OA-Fe3O4 NP) and electrostatic assembly-induced GON (i.e. GON/PEI/Octakis-Fe3O4 NP) nanocomposites measured by SQUID magnetometry at room temperature. The values of saturated magnetization of GON/PEI/OA-Fe3O4 NP and GON/PEI/Octakis-Fe3O4 NP were measured to be about 18.6 emu/g and 8.5 emu/g at room temperature, respectively. These results evidently show that the loading amount of Fe3O4 NPs in GON-1 is much higher than that in electrostatic assembly-induced GON.
 

Table S1. Comparison to a previous study of Suzuki–Miyaura coupling reactions catalyzed GON-Pd catalysts with phenylboronic acid in toluene.
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Reaction conditions: a GON/PEI/OA-Fe3O4 NP/PEI/PEI/TOABr-Pd NP (Pd amount: 0.6 mol%). b Isolated yield and products were determined by 1H NMR and 13C NMR spectroscopy (NMR spectra for products 1b and 1f are seen in characterization of NMR data). c Graphene-benzimidazole-supported Pd NPs (Pd amount: 0.6 mol%). d Pd NP/reduced-graphene oxide (0.72 mol%). e Pd NP/Fe3O4 NP/reduced-graphene oxide (Pd amount: 0.54 mol%). f Potassium aryltrifluoroborates is used instead of phenylboronic acid. g Pd NP/reduced-graphene oxide-octadecylamine (Pd amount: 0.1 mol%).


Table S2. Suzuki–Miyaura cross-coupling reaction of aryl iodide and phenylboronic acid using the GON-3-PEI catalyst.
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a Reaction conditions: Ar-X (1 mmol), phenylboronic acid (2 mmol), tetrabutylammonium bromide (TBAB) (2 mmol), Na2CO3 (4 mmol) and toluene (3 mL) at boiling temperature under argon gas for 24 h. b Represents the catalyst: GON-3-PEI (i.e., GON/PEI/OA-Fe3O4 NP/PEI/TOABr-Pd NP/PEI) nanosheets (3 mg). c Isolated yield and products were determined by 1H NMR and 13C NMR spectroscopy. (NMR spectra for products 1a is seen in characterization of NMR data.)

[image: C:\Users\고윤지\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Figure S7..png]





















Fig. S9. (a) TEM and STEM (scanning transmission electron mictroscopy) images and (b) EDX analysis of MWCNT-1 (i.e., MWCNT/PEI/OA-Fe3O4 NP/PEI/TOABr-Pd NP).


Characterization of NMR Data

[image: C:\Users\고윤지\AppData\Local\Microsoft\Windows\INetCache\Content.Word\1a.tif]1a: 4-nitrobiphenyl [Ref. S11], 1H NMR (500 MHz, CDCl3): δ = 7.44-7.47 (m, 1H), 7.49-7.52 (m, 2H), 7.63 (d, 2H, J = 7), 7.75 (d, 2H, J = 8.5), 8.31 (d, 2H, J = 8.5), 13C NMR (125 MHz, CDCl3): δ = 124.26 (C), 127.53 (C), 127.95 (C), 129.05 (C), 129.29 (C), 138.91 (C), 147.21 (C), 147.78 (C).

[image: C:\Users\고윤지\AppData\Local\Microsoft\Windows\INetCache\Content.Word\1b.tif]1b: biphenyl [Ref. S12], 1H NMR (500 MHz, CDCl3): δ = 7.34–7.36 (2H, m), 7.43–7.46 (4H, m), 7.60 (4H, d, J = 7.5 Hz), 13C NMR (125 MHz, CDCl3): δ = 141.37 (C), 128.88 (C), 127.38 (C), 127.30 (C).

[image: C:\Users\고윤지\AppData\Local\Microsoft\Windows\INetCache\Content.Word\1c.tif]1c: 4-acetylbiphenyl [Ref. S13], 1H NMR (500 MHz, CDCl3): δ = 8.04 (2H, d, J = 8.5 Hz), 7.70 (2H, d, J = 8.5 Hz), 7.64 (2H, d, J = 7.5 Hz), 7.50 (2H, m), 7.43 (1H, m), 2.67 (3H, s), 13C NMR (125 MHz, CDCl3): δ =197.84 (C), 145.80 (C), 139.87 (C), 135.81 (C), 128.96 (C), 128.93 (C), 128.24 (C), 127.28 (C), 127.24 (C), 26.71 (C).

[image: C:\Users\고윤지\AppData\Local\Microsoft\Windows\INetCache\Content.Word\1d.tif]1d: biphenyl-4-carbonitrile [Ref. S14], 1H NMR (500 MHz, CDCl3): δ = 7.42–7.45 (1H, m), 7.48–7.51 (2H, m), 7.59 (2H, d, J = 7.5 Hz), 7.68–7.75 (4H, m), 13C NMR (125 MHz, CDCl3): δ = 111.03 (C), 119.10 (C), 127.37 (C), 127.87 (C), 128.80 (C), 129.25 (C), 132.74 (C), 139.31 (C). 
[image: C:\Users\고윤지\AppData\Local\Microsoft\Windows\INetCache\Content.Word\1e.tif]
1e: 4-fluorobiphenyl [Ref. S15], 1H NMR (500 MHz, CDCl3): δ = 7.11-7.15 (2H, m), 7.33-7.36 (1H, m), 7.42-7.45 (2H, m), 7.54-7.56 (4H, m), 13C NMR (125 MHz, CDCl3): δ = 115.67 (C), 115.83 (C), 127.16 (C), 127.39 (C), 128.79 (C), 128.85 (C), 128.96 (C), 137.46 (C), 137.48 (C), 140.39 (C), 161.61 (C), 163.58 (C).
[image: C:\Users\고윤지\AppData\Local\Microsoft\Windows\INetCache\Content.Word\1f.tif]
1f: 4-methoxybiphenyl [Ref. S16], 1H NMR (500 MHz, CDCl3): δ = 3.85 (3H, s), 6.97-6.99 (2H, m), 7.29-7.32 (1H, m), 7.40-7.43 (2H, m), 7.52-7.56 (4H, m), 13C NMR (125 MHz, CDCl3): δ = 55.49 (C), 114.32 (C), 126.79 (C), 126.88 (C), 128.29 (C), 128.86 (C), 133.90 (C), 140.96 (C), 159.26 (C).
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