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Figure S1. Schematic diagram showing the difference between (a) Charged metal 

NP/oppositely charged polymer linker using traditional electrostatic LbL assembly and (b) 

Fused metal NP/small organic linker using our approach. 
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Figure S2. 
1
H NMR spectra of a) tetraoctylammonium bromide (TOABr) and b) 

tetraoctylammonium sulfate (TOAS) complexed with precursor silver ions (Ag
+
). c) Ball-and-

stick molecular model of tetraoctylammonium (TOA), where blue, red, and yellow balls 

indicate nitrogen, carbon, and hydrogen atoms, respectively. The Ag nanoparticles (NPs) were 

synthesized by the modified Brust−Schiffrin method and their complex structures before 

reduction were characterized by examining the 
1
H NMR chemical shifts. a) 

1
H NMR spectra 

(500 MHz, toluene-d8) of the TOABr: δ = 3.54 (2H, broad, NCH2), 1.67 (2H, broad, 

NCH2CH2), 1.38−1.33 (10H, m), 1.00−0.97 ppm (3H, m, CH3) and b) TOAS: δ = 3.37 (2H, 

broad, NCH2), 1.64 (2H, broad, NCH2CH2), 1.42−1.37 (10H, m), 1.01−0.98 ppm (3H, m, 

CH3).
[S1]

 The signals of the first methylenic protons (*) adjacent to the ammonium nitrogen 

atom were shifted upfield in TOAS relative to those in TOABr, implying the complexation of 

TOAS ligands and silver ions. 

  

(c) 
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Figure S3. a) Size distribution of TOAS-Ag NPs measured from HR-TEM image. The 

average diameter of TOAS-Ag NPs was approximately 8.3 nm. b) Selected-area electron 

diffraction (SAED) pattern and c) X-ray diffraction (XRD) pattern of TOAS-Ag NPs. The 

XRD pattern is well matched with the face-centered cubic structure of Ag (JCPDS Card No. 

01-087-0719). d) HR-TEM image of TOAS-Ag NPs acquired one month after synthesis. 

  

(a) (b) 

(d) (c) 
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Figure S4. HR-TEM images of TOAS-stabilized a) Au NPs and b) Cu NPs. 

  

(a) (b) 
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Figure S5. FTIR spectra of TOAS-Ag NPs, OA-Ag NPs, and TAA. TOAS-Ag NPs and OA-

Ag NPs showed the C−H stretching peaks derived from the long alkyl chains of ligands in the 

range from 3000 to 2800 cm
−1

, whereas TAA did not show any absorbance peak in that range. 
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Figure S6. UV-vis absorbance spectrum of Ag-sputtered film.  
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Figure S7. Tilted (main images), cross-sectional (top right insets) and planar (top left insets) 

FE-SEM images of (TOAS-Ag NP/TAA)n multilayers on Si wafers as a function of bilayer 

number (n = 5, 10, 15, and 20). 
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Figure S8. Electrical conductivity of (TOAS-Ag NP/TAA)20 multilayers as a function of 

annealing temperature. 
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Figure S9. a) ln σ vs T
−1/4

 plot for variable-range hopping (VRH) mechanism and b) ln σ vs 

T
−1/2 

plot for tunneling mechanism of (TOAS-Ag NP/TAA)20 multilayers from 2 to 300 K. 

Electron transport mechanism of VRH and tunneling conduction processes in a semiconductor 

can be described using the equation σ = σ0 exp(-A/T
(1/1+d)

), where σ is the electrical 

conductivity, T is the absolute temperature [K], A is the constant, and d is the dimensionality. 

Here, d is 3 for VRH and is 1 for tunneling mechanism. As shown in figure S9a and S9b, 

(TOAS-Ag NP/TAA)n multilayers did not follow the semiconductor conduction behavior 

(two diagonal lines in graphs). c) Electrical conductivity of (TOAS-Ag NP/TAA)20 

multilayers as a function of temperature over the range from 2 to 300 K.  

(a) (b) 

(c) 
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Figure S10. Electrical stability of (TOAS-Ag NP/TAA)10 multilayer-coated PET substrate as 

a function of bending radius. The Ag NP-coated PET maintained 98.0% of its initial electrical 

conductivity (0 ~ 1.30 × 10
5 

S cm
−1

) under the bending radius of 1 mm. 
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Figure S11. a) Metallic polyester textile, b) metallic cotton textile, and c) metallic cotton 

thread prepared by depositing (TOAS-Ag NP/TAA)30 multilayers onto the substrates. These 

show that various materials of substrates regardless of size and shape can be coated with Ag 

NPs through our approach. 

  

(a) (b) 

(c) 
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Figure S12. a) FTIR spectra of OA-Fe3O4 NPs and TAA. b) FTIR spectra of LbL-assembled 

(OA-Fe3O4 NP/TAA)m multilayers during a partial ligand-exchange reaction as a function of 

bilayer number (m). The persistent C−H stretching peaks (ca. 2850−2950 cm
−1

) assigned to 

the long alkyl chains of OA ligands demonstrate that the deposition of TAA on the Fe3O4 NP 

layer-coated substrate partially removed the OA ligands loosely bound to Fe3O4 NP surface. 

These phenomena occurred because the electron-donating primary amine groups of TAA had 

a higher affinity for Fe3O4 NP surface than the carboxylate groups of OA ligand. The residual 

amount of OA ligands was 18.3% of the initial amount. Therefore, the C−H stretching peaks 

were generated and disappeared repeatedly by the alternative deposition of TAA and OA-

Fe3O4 NPs. 

  

(b) (a) 
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Figure S13. Planar, tilted, cross-sectional FE-SEM images and EDX images of Fe3O4-MCP 

electrode. In this case, Ag NPs and Fe3O4 NPs were densely packed onto cellulose fibers, 

maintaining the highly porous structure of the paper. 
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(b) 

(d) (c) 

(a) 

(e) 
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Figure S14. a) Cyclic voltammograms of Fe3O4-MCP electrodes with increasing OA-Fe3O4 

NP mass loading from 0.40 to 0.88 mg cm
−2

 at a scan rate of 5 mV s
−1

. b) Nyquist plots and 

equivalent series resistance (ESR, inset) of Fe3O4-MCP electrodes as a function of mass 

loading. The value of ESR increased with increasing OA-Fe3O4 NP mass loading, which is 

the general tendency in pseudocapacitive materials-based electrodes.
[S2]

 c) Areal capacitances 

of Fe3O4-MCP electrodes and Fe3O4-nonporous Ag electrodes as a function of bilayer number 

(m = 10, 15, and 20) at a scan rate of 5 mV s
−1

. d) Cyclic voltammograms of Fe3O4-MCP 

electrodes with a mass loading of 0.88 mg cm
−2

 in a scan rate ranging from 5 to 200 mV s
−1

. 

e) Galvanostatic charge/discharge (GCD) curves of Fe3O4-MCP electrodes with a mass 

loading of 0.88 mg cm
−2 

for current densities ranging from 1 to 5 mA cm
−2

.
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Table S1. Electrical conductivity comparison of Ag NP-based films. 

Ag NPs 
Fabrication methods 

Substrates 

Additional treatments 

(Sintering principles) 

Electrical conductivity 

[S cm
−1

] 
Ref. 

TOAS-Ag NPs 

Metallic fusion-induced 

LbL assembly 

Various substrates 

(Glass, Si wafer, PET, paper) 

- 
1.60 × 10

5 

(465 nm thickness) 

Our 

work 

TOAS-Ag NPs 

Metallic fusion-induced 

LbL assembly 

Various substrates 

(Glass, Si wafer, paper) 

Thermal annealing 

(160 ºC) 

4.62 × 10
5 

(313 nm thickness) 

Our 

Work 

Alkylamine-

stabilized Ag NPs 

Spin-coating 

Glass 

Thermal annealing 

(120 − 160 ºC) 

2.00 − 4.00 × 10
4 

(70 nm thickness) 
S3 

Oleic acid-stabilized 

Ag NPs 

Spin-coating 

Glass 

Thermal annealing 

(200 ºC) 

2.00 − 4.00 × 10
4 

(70 nm thickness) 
S4 

Dodecylamine-

stabilized Ag NPs 

Aerosol-jet printing 

PI
a)

 and paper 

Thermal annealing 

(300 ºC) 
6.30 × 10

4
 S5 

PVP
b)

-stabilized 

Ag NPs 

Inkjet printing 

Glass and PET 

Self-aggregation 

after solvent evaporation 

7.00 × 10
4 

(400 nm thickness) 
S6 
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PAA
c)

-stabilized 

Ag NPs 

Inkjet printing 

Glass, PET, and paper 

Charge neutralization 

by PDAC
d)

 

1.26 × 10
5 

(500 nm thickness) 
S7 

PAA-stabilized 

Ag NPs 

Inkjet printing 

PET 

Electrolyte treatments 

(e.g., NaCl etc.) 
2.58 × 10

5 
S8 

Ag NPs 

Electroless plating 

Glass, Si wafer, PP
e)

, PET, 

PMMA
f)
, and PTFE

g)
 

Electrolyte treatments 

(e.g., CaCl2 etc.) 

~ 5.53 × 10
4 

(~ 270 nm thickness) 
S9** 

Trioctylamine-

stabilized Ag NPs 

Spin-coating 

Glass and Si wafer 

Ammonium thiocyanate 

treatment 

1.14 × 10
5 

(220 nm thickness) 
S10 

PAA-stabilized 

Ag NPs 

Inkjet printing 

PET and PEN
h)

 

Ar plasma & 

microwave treatment 

3.78 × 10
5 

(~ 250 nm thickness) 
S11 

 

a)
PI: polyimide; 

b)
PVP: poly(vinylpyrrolidone); 

c)
 PAA: poly(acrylic acid); 

d)
PDAC: poly(diallyldimethylammonium chloride); 

e)
PP: 

polypropylene; 
f)
PMMA: poly(methyl methacrylate); 

g)
PTFE: poly(tetrafluoroethylene); 

h)
PEN: polyethylene naphthalate 

** Electrical conductivity was evaluated from given data in the literature.
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