Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.201906768

Layer-by-Layer Assembled Oxide Nanoparticle Electrodes with High Transparency, Electrical Conductivity, and Electrochemical Activity by Reducing Organic Linker-Induced Oxygen Vacancies

Ikjun Cho, Yongkwon Song, Sanghyuk Cheong, Younghoon Kim, and Jinhan Cho**

Supporting Information

Layer-by-Layer Assembled Oxide Nanoparticle Electrodes with High Transparency, Electrical Conductivity, and Electrochemical Activity by Reducing Organic Linker-Induced Oxygen Vacancies

Ikjun Cho,[§] Yongkwon Song,[§] Sanghyuk Cheong, Younghoon Kim,* and Jinhan Cho*

Figure S1. Size distribution histogram of OAm-ITO NPs measured from HR-TEM images.

Table S1. Element analysis of OAm-ITO NPs. Concentration and percentage of indium (In) and tin (Sn) within the prepared OAm-ITO NPs that were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Elements	Indium (In)	Tin (Sn)	
Concentration (ppm)	6.57×10^{5}	6.62×10^{4}	
Percentage of elements [Element/(In + Sn)] (%)	90.8%	9.2%	

Figure S2. Photographic image of OAm-ITO NPs with high dispersion stability in toluene.

Figure S3. Deconvoluted XPS spectra of a) indium (In) $3d_{5/2}$ and b) tin (Sn) $3d_{5/2}$ collected from OAm-ITO NPs. The deconvoluted peaks in the In $3d_{5/2}$ core-level spectrum (a) could be divided into three doublets that corresponded to three different oxidation states of the In atoms. More specifically, the main peak was deconvoluted into: (1) an In^{0-2+} peak (443.0 eV) caused by the presence of oxygen vacancy states; (2) an In^{3+} peak (444.2 eV) caused by the fully oxidized state, such as In_2O_3 ; and (3) an $In(OH)_x$ peak (445.4 eV) caused by the In atoms with surface oxygen atoms or hydroxyl groups.^[S1,S2] The ratios of the In^{0-2+} , In^{3+} , and $In(OH)_x$ states among the In atoms in the OAm-ITO NPs were estimated to be approximately 6.6%, 52.2%, and 41.2%, respectively. The Sn $3d_{5/2}$ spectrum (b) was deconvoluted into Sn⁰⁻²⁺ $3d_{5/2}$ (485.0 eV), Sn²⁺ $3d_{5/2}$ (485.9 eV), and Sn⁴⁺ $3d_{5/2}$ (486.6 eV) peaks.^[S2,S3] The ratio of the Sn⁴⁺ oxidation state was also estimated to be approximately 70.3%.

Figure S4. FTIR spectra of pristine OAm and OCA-stabilized ITO NPs (i.e., OAm-ITO NPs) and Hyd. In the case of the OAm-ITO NPs, the C–H stretching peaks (~2,927 and ~2,850 cm⁻¹) derived from the long alkyl chains of the OAm and OCA ligands were shown. However, in the case of the Hyd, no distinct peak appeared in that range.^[S4]

Figure S5. The optical band gap of (OAm-ITO NPs/Hyd)₄₀ multilayers, obtained using the Tauc plot from UV–visible spectra.^[S5]

Figure S6. UV–visible absorbance spectra of a) (TOA-Au NP/Hyd)_n and b) (TOA-Ag NP/Hyd)_n multilayers with increasing bilayer number (n).

Figure S7. Sheet resistance of (OAm-ITO NPs/Hyd)_{*n*} multilayers on glass substrates before (black circles) and after (red squares) thermal annealing at 300 \Box as a function of bilayer number (*n*).

Figure S8. Sheet resistance of (OAm-ITO NPs/Hyd)₄₀ multilayers on glass substrates before and after thermal annealing with increasing annealing temperature from 200 to 400 \Box .

Materials	Method	Thickness (nm)	Transmittance at 550 nm (%)	Sheet resistance $(\Omega \text{ sq}^{-1})$	Annealing condition	Reference
ITO NPs	LbL assembly	299	89.6	86	300 □, 3 h (under H ₂ /Ar)	Our work
ITO NPs	LbL assembly	299	87.0	30	400 □, 3 h (under H ₂ /Ar)	Our work
ITO NPs	Spin- coating	146	87.0*	358	300 □, 6 h (under H ₂ /Ar)	[S6]
ITO NPs	Spin- coating	146	-	118	400 □, 6 h (under H ₂ /Ar)	[S6]
ITO NPs	Spin- coating	300	83.0*	110	300 □, 6 h (under H ₂ /Ar)	[S7]
ITO NPs	Spin- coating	195	88.0	133	$120 \Box, 10$ min + 300 \Box , 1h (under H ₂ /Ar)	[S8]
ITO NPs	Spin- coating	191	90.0	466	300 □, 2 h (under H ₂ /Ar)	[S9]
ITO NPs	Spin- coating	200	88.0*	1316*	420 □, 40 min (under air)	[S10]
ITO NPs	Ink-jet printing	750	88.1	203	$\begin{array}{c} 450 \ \Box, 4\\ min\\ (under\\ N_2/O_2) \end{array}$	[S11]

Table S2. Comparison of optical/electrical performance of ITO NP-based TCOelectrodes.

* Optical and/or electrical performance was evaluated from the given data in the literature.

Figure S9. Frequency and mass changes of (OAm-ITO NPs/Linker)_n multilayers obtained from QCM measurements for PEI (black circle), TREN (blue triangles) and Hyd (red squares) linkers and the molecular structure of linkers. The average loading amount of (OAm-ITO NPs/PEI), (OAm-ITO NPs/TREN), and (OAm-ITO NPs/Hyd) bilayers resulted in a Δm of ~6.40, ~5.36, ~4.0 µg cm⁻², respectively.

Figure S10. TGA profiles of a) pristine OAm-ITO NPs, b) (OAm-ITO NPs/PEI)₄₀, c) (OAm-ITO NPs/TREN)₄₀, and d) (OAm-ITO NPs/Hyd)₄₀ multilayers. In this case, the organic composition of pristine OAm-ITO NPs was relatively higher than those of amine-functionalized linker-based multilayers due to the presence of their bulky native ligands. The compositions of ITO NPs within the multilayers were estimated to be ~90.9 (PEI), ~93.6 (TREN), and ~95.7% (Hyd), respectively. Resultantly, taking into account the QCM measurements (**Figure S9, Supporting Information**), the loading amount of ITO NPs within the PEI, TREN, and Hyd linker-based multilayers was calculated to be approximately 5.82, 5.02, and 3.83 μ g cm⁻², respectively.

Figure S11. Total thickness change of $(OAm-ITO NPs/Linker)_n$ multilayers on Si wafers for PEI (black circle), TREN (blue triangles), and Hyd (red squares) linkers.

Table S3. Electrical and optical properties of $(OAm-ITO NPs/Linker)_n$ multilayers treated under the same annealing conditions (temperature: 300 \Box ; time: 3 hours; atmosphere: 95% Ar gas and 5% H₂ gas).

Film notation	Thickness (nm)	Transmit tance at 550 nm (%)	Sheet resistance $(\Omega \text{ sq}^{-1})$	Electrical conductivit y (S cm ⁻¹)	Resistivity (Ω cm)	Hall carrier concentrat ion (10 ²⁰ cm ⁻³)	Hall mobility $(cm^2 V^{-1} s^{-1})$
(OAm-ITO NPs/Hyd) ₁₀	70	89.7	4.1×10^5	0.348	2.87	1.92	0.27
(OAm-ITO NPs/Hyd) ₂₀	146	88.3	$1.8 imes 10^3$	38.1	$2.6 imes 10^{-2}$	2.56	1.23
(OAm-ITO NPs/Hyd) ₃₀	224	90.8	345	129	7.8×10^{-3}	3.42	2.87
(OAm-ITO NPs/Hyd) ₄₀	299	89.6	86	389	$2.6 imes 10^{-3}$	5.82	8.35
(OAm-ITO NPs/PEI) ₄₀	447	70.5	2.3×10^{5}	9.7×10^{-2}	10.3	0.4	0.14
(OAm-ITO NPs/TREN) ₄₀	410	86.9	346	70.5	1.4×10^{-2}	4.63	1.42

Figure S12. Deconvoluted XPS spectra of O 1s peaks collected from solution-cast OAm-ITO NP films after thermal annealing at 300 °C. The oxygen vacancy states in thermally annealed OAm-ITO NP films were estimated to be ~33.0%.

Figure S13. Nyquist plots of $(OAm-ITO NPs/Hyd)_n$ multilayers after thermal annealing at 300 °C with increasing bilayer number (*n*) from 10 to 40.

Figure S14. CV curves of (OAm-ITO NPs/Hyd)_n multilayers after thermal annealing at 300 °C with increasing scan rates from 0.01 to 2 V s⁻¹ for different bilayer numbers: a) n = 10, b) n = 20, c) n = 30, and d) n = 40.

Figure S15. GCD profiles of (OAm-ITO NPs/Hyd)_n multilayers after thermal annealing at 300 °C with increasing current densities from 0.2 to 2 mA cm⁻² for different bilayer numbers: a) n = 10, b) n = 20, c) n = 30, and d) n = 40.

Figure S16. GCD profiles of (OAm-ITO NPs/Hyd)₄₀ multilayers for 1^{st} , 1000^{th} , 3000^{th} , and 5000^{th} cycles in the cycling tests.

Video S1. Video showing (OAm-ITO NPs/Hyd)₄₀ multilayers on a high-curvature bulb glass connected with an LED after thermal annealing at 300 \Box .

Supplementary References

- [S1] S. Y. Lee, J. Kim, A. Park, J. Park, H. Seo, ACS Nano 2017, 11, 6040.
- [S2] A. Thogersen, M. Rein, E. Monakhov, J. Mayandi, S. Diplas, J. Appl. Phys. 2011, 109, 113532.
- [S3] M. Kwok, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik, J. Szuber, Thin

Solid Films 2005, 490, 36.

- [S4] M. Brahmayya, Shenghong A. Dai, S.-Y. Suen, *RSC Adv.* 2015, *5*, 65351.
- [S5] C. Kim, Y.-H. Kim, Y.-Y. Noh, S.-J. Hong, M. J. Lee, Adv. Electron. Mater. 2018, 4, 1700440.
- [S6] J. Lee, S. Lee, G. Li, M. A. Petruska, D. C. Paine, S. Sun, J. Am. Chem. Soc. 2012, 134, 13410.
- [S7] J. Song, S. A. Kulinich, J. Li, Y. Liu, H. Zeng, Angew. Chem. Int. Ed. 2015, 127, 472.
- [S8] J. Lee, M. A. Petruska, S. Sun, J. Phys. Chem. C 2014, 118, 12017.
- [S9] Z. Chen, X. Qin, T. Zhou, X. Wu, S. Shao, M. Xie, Z. Cui, J. Mater. Chem. C 2015, 3, 11464.
- [S10] M. Yarema, S. Pichler, D. Kriegner, J. Stangl, O. Yarema, R. Kirchschlager, S. Tollabimazraehno, M. Humer, D. Häringer, M. Kohl, G. Chen, W. Heiss, ACS Nano 2012, 6, 4113.
- [S11] J.-A. Jeong, J. Lee, H. Kim, H.-K. Kim, S.-I. Na, Sol. Energy Mater. Sol. Cells 2010, 94, 1840.