Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Small Micro

Supporting Information

for *Small*, DOI: 10.1002/smll.201300522

Organic Field-Effect Transistor Memory Devices Using Discrete Ferritin Nanoparticle-Based Gate Dielectrics

Beom Joon Kim, Yongmin Ko, Jeong Ho Cho,* and Jinhan Cho*

Supporting Information

Organic Field-Effect Transistor Memory Devices Using Discrete Ferritin Nanoparticle-Based Gate Dielectrics

Beom Joon $Kim^{1\dagger}$, Yongmin $Ko^{2\dagger}$, Jeong Ho Cho^{1*} and Jinhan Cho^{2*}

¹ SKKU Advanced Institute of Nanotechnology (SAINT), School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea

² Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea

[†]These authors equally contributed to this work.

*Address correspondence to jinhan71@korea.ac.kr, and jhcho94@skku.edu

Figure S1. Cyclic voltammograms from PAH/ferritin multilayer-coated indium tin oxide electrodes with electrode area of 0.5 cm² in phosphate buffer solutions at pH 7 (potential sweep rates: 3, 100, and 300 mV·s⁻¹). In the case of PAH single layer, the scan rate was 100 mV·s⁻¹.

Figure S2. KFM image for the (PAH/ferritin NP)₅ multilayers coated onto a Pt-coated Si wafer, measured from the charge trap/release operations. First, 23 x 23 μ m² area were scanned under + 10 V bias for a charge trap. The charge release operation was then performed by scanning five different regions of 3 x 3 μ m² area under – 10 V bias. These results imply that charge trap/release operations are uniformly observed in the total film area.

Figure S3. 2D-topographic images of $(PAH/ferritin NP)_5$ multilayer films as a function of time shown in Figure 2b. These results imply that topographic images of multilayers are not changed by charge trap (+10 V)/release (-10 V) operations under the given bias condition.

Figure S4. Output characteristics of OFET memory devices with (PAH/ferritin NP)₁₀ multilayered gate dielectrics. The curves were obtained after applying $V_G = +100$ V for programming, and $V_G = -100$ V for erasing (1 s).

Figure S5. Memory window (ΔV_{th}) characteristics of ferritin NP multilayer-based OFET device as a function of programming and erasing voltages.

Figure S6. Change in programming and erasing current level for memory devices as a function of the bilayer number (n) of $(PAH/ferritin NP)_n$ gate dielectrics, varied from 2 to 40.

Figure S7. Retention time test for pentacene OFET memory devices with (PAH/apoferritin NP)₁₀ gate dielectrics. $V_G = +100$ V for programming and $V_G = -100$ V for erasing were applied for 1 s.

Figure S8. (a) Shifts in transfer curves at $V_D = -40$ V for pentacene OFET memory devices with (PAH/catalase)₃₀ gate dielectrics. $V_G = +100$ V for programming and $V_G = -100$ V for erasing were applied for 1 s. (b) Program/erase speeds of pentacene OFET memory devices with (PAH/catalase)₃₀ gate dielectrics. Programming/erasing bias pulses of $V_G = \pm 100$ V were applied to the gate at different pulse widths.

Figure S9. Retention time tests for the plastic film devices with $(PAH/ferritin NP)_{40}$ multilayers. The device structure is as follows: ITO-coated PEN/Al₂O₃ gate dielectric/(PAH/ferritin NP)₄₀ multilayers/Pentacene/source-drain electrode.

Figure S10. Thermogravimetric analysis (TGA) data of PAH/ferritin nanocomposites.