Supporting Information

Nonvolatile Memory Properties of Sol-Gel Derived Niobium Oxide Films

Hyunhee Baek^{1§}, Chanwoo Lee^{2§}, Jungkyu Choi^{1*} and Jinhan Cho^{1*}

Figure S1. Depth-distribution profile of oxygen composition within Nb₂O₅ film annealed at 620 °C.

Figure S2. Electrical switching behavior of sol-gel derived Nb_2O_5 devices measured from 100 samples. About 30 samples within red lines displayed malfunctional switching behavior. As a result, our devices showed the output performance of about 70 %.

Figure S3. Thermogravimetric analysis of niobium ethoxide. The mass loss of about 23 % was observed during the formation of Nb_2O_5 films.

Figure S4. AFM image of 48 nm-thick Nb_2O_5 film with RMS surface roughness of about 2.68 nm

Figure S5. The EDS (Energy Dispersive Spectrometer) analysis of Nb₂O₅ film devices thermally annealed at 620 °C.

Figure S6. FT-IR spectra of Nb(OCH₂CH₃)₅ and Nb₂O₅ films thermally annealed at 450 and 520°C.

Figure S7. Electroforming voltage of sol-gel derived devices as a function of Nb₂O₅ film thickness.

Figure S8. Cycling test of Nb_2O_5 devices measured from a switching speed of 600 μ s.

Figure S9. *I-V* curves of sol-gel derived Nb₂O₅ devices measured after one year.

Figure S10. *I-V* curves of sol-gel derived Nb₂O₅ devices (annealed at 620 $^{\circ}$ C) measured from (a) W (tungsten) (b) Au (gold), and (c) Pt (platinum) top electrodes. (d) Electroforming voltages of Nb₂O₅ film devices with W, Au and Pt top electrodes.

7V

10V

Figure S11. CS-AFM images of Nb_2O_5 films measured with increasing initial electroforming voltage from 1 to 10 V. At 10V, the films lost their reversible switching properties as a result of dielectric break down.

Figure S12. Cell size dependences of operating voltages of Nb₂O₅ film devices.

Figure S13. Dependences of resistance characteristics on a cell area for LRS and HRS.

(b)

(a)

Figure S14. (a) Cross-sectional HR-TEM image of amorphous Nb₂O₅ films. (b) *I-V* curves of solgel derived Nb₂O₅ devices. These Nb₂O₅ films were annealed at 450 $^{\circ}$ C (2 h under nitrogen atmosphere, and furthermore 2 h under oxygen condition).

Figure S15. XPS deconvoluted spectra of (a) Nb3d and (c) O1s of Nb₂O₅ films annealed at 450 °C.

Figure S16. EF-TEM image map of Ti/Pt/Nb₂O₅ film marked by a square region.

(b)

Figure S17. (a) Schematic and (b) *I-V* curves of sol-gel derived Nb₂O₅ devices without Ti layer. Nb₂O₅ films were thermally annealed at 620 $^{\circ}$ C.

(a)