Supporting Information

Polymer/Perovskite-Type Nanoparticle Multilayers with Multi-Electric Properties Prepared from Ligand Addition-Induced Layer-by-Layer Assembly

Younghoon Kim,^{1†} Kyungyun Kook,^{1†} Sun Kak Hwang,² Cheolmin Park,² and Jinhan Cho¹*

(Unit: nm)

OA-BTO NPs	1000 rpm	2000 rpm	3000 rpm	4000 rpm
concentration				
5 mg·mL ⁻¹	19 ± 5.8	14 ± 1.9	12 ± 1.1	11 ± 0.9
10 mg·mL⁻¹	26 ± 4.3	22. ± 3.7	19 ± 1.9	18 ± 1.1
15 mg·mL ⁻¹	35 ± 4.1	32. ± 2.8	28 ± 2.8	22 ± 2.1
20 mg·mL-1	46 ± 4.2	41 ± 1.8	34 ± 2.6	27 ± 2.7
30 mg⋅mL-1	65 ± 4.9	57 ± 3.7	49 ± 3.3	42 ± 3.2

Table S1. Thickness data of the single-step spin-coated films as a function of concentration of OA-BTO NP solution and spinning speed.

Figure S1. The particle size distribution histogram of approximately 8 nm OA-BTO NPs.

Figure S2. FT-IR spectrum of pure oleic acid. The C–H stretching (2855, 2925 and 2954 cm⁻¹) and C=O stretching (1711 cm⁻¹) peaks contributed to the long aliphatic chains and carboxylic acid (– COOH) groups of the pure oleic acid.

Figure S3. FT-IR spectra of LbL-assembled film as a function of adsorption time of the NH₂dendrimer onto (A) the outermost OA-Ag NP layer- and (B) the outermost OA-BTO NP layercoated films.

Figure S4. (a) QCM analysis of the successive spin-coated (OA-BTO NP)₅ film without an aid of NH₂-dendrimer layers prepared using the solution concentration of 10 mg \cdot mL⁻¹ at the spinning speed of 3000 rpm.

Figure S5. (A) AFM images of $(NH_2$ -dendrimer/OA-BTO NP)₅ multilayer film deposited on a silicon wafer. The root-mean-square (RMS) surface roughness was measured to be about 1.16 nm in the scan area of $1 \times 1 \mu m^2$. (B) – (E) AFM images of the $(NH_2$ -dendrimer/OA-BTO NP)_n multilayer films measured in the scan area of $10 \times 10 \mu m^2$. In these cases, the surface roughnesses of multilayers were measured to be (B) about 1.32 nm for n = 5, (C) 1.86 nm for n = 10, (D) 1.92 nm for n = 15, and (E) 2.12 nm for n = 20. (F) AFM images of the $(NH_2$ -dendrimer/OA-BTO NP)₂₀ multilayer films measured in the scan area of $20 \times 20 \mu m^2$. The measured RMS surface roughness was measured to be about 2.82 nm.

Figure S6. Light transmittance curves of the bare quartz substrate and the $(NH_2-dendrimer/OA-BTO NP)_{20}$ multilayer-coated quartz substrate. The inset shows photographic images of bare quartz substrate and 20-bilayered BTO nanocomposite film-coated substrate. In this case, the light transmissions of bare and multilayer-coated quartz substrates were measured to be about 93.3 and 92.7 % at the wavelength of 600 nm, respectively.

Figure S7. Initial electroforming *I-V* curve of a 5-bilayered device with a current compliance of 100 mA.

Figure S8. (A) AFM topographic image of the simple-casted film prepared using the OA-BTO NP solution concentration of 5 mg·mL⁻¹. AFM topographic images of the single-step spin coated films using OA-BTO NP concentrations of (B) 10 mg·mL⁻¹ at the spinning speed of 3000 rpm, (C) 30 mg ·mL⁻¹ at the spinning speed of 1000 rpm, and (D) 30 mg·mL⁻¹ at the spinning speed of 3000 rpm.

Figure S9. *I-V* curves of the single-step spin-coated (OA-BTO NP)₁ film prepared using the solution concentration of 30 mg·mL⁻¹ at the spinning speed of (A) 1000 and (B) 3000 rpm.

Figure S10. CS-AFM images of (NH₂-dendrimer/OA-BTO NP)₅ multilayers in ON (~ -6 V) and OFF state (~ -0.2 V) during (A) negative voltage sweep, and OFF ($\sim +0.2$ V) and ON ($\sim +6$ V) state during (B) positive voltage sweep, respectively. CS-AFM images of multilayer devices were measured from the respective regions in *I-V* curve of (NH₂-dendrimer/OA-BTO NP)₃ multilayer device. The formation of conductive filamentary paths was confirmed by CS-AFM characterizations. In this case, electrochemically inert Pt tip was used as a top electrode instead of Ag electrode. The formation and rupture of the randomly distributed paths were observed after "SET" processes (*i.e.*, switching from low current (OFF) to high current (ON) state) and "RESET" (*i.e.*, switching from high current (ON) to low current (OFF) state).

Figure S11. *I-V* curves of (NH₂-dendrimer/OA-BTO NP)₅ multilayer devices measured from (A) Au, (B) Pt, and (C) W top electrodes.