Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Figure S1. Photograph of an LbL-MWNTs/MnO_x MSC array with a scale bar of 3 mm.

Figure S2. (a) CV curves taken from MSCs with 10 (blue), 15 (green) and 20 (red) LbL fil ms of MWNT/MnOx at scan rate of 500 mV/s. (b) Volumetric capacitance of LbL-MWNT /MnOx MSC with various number of bilayer.

Figure S3. Cross-sectional SEM image of (a) 20 LbL-MWNTs electrode and (b) 20 LbL-M WNTs/MnOx electrode. The scale bar corresponds to 200 nm.

Figure S4. XPS spectra of the survey of MWNT-COOH/MnO_x nanocomposites.

Figure S5. Linear dependence (red line) of the discharge current density vs. scan rate.

Figure S6. (a) CV curves taken from MSCs with five different mass ratio of MWNT-CO OH to MnOx at scan rate of 500 mV/s. (b) Normalized specific capacitance of the MSCs with different mass ratio of MWNT-COOH to MnOx. C is the volumetric capacitance of MSCs with different mass ratio and C_0 is the volumetric capacitance of MSC with mass ratio of 1:5.

Figure S7. Volumetric capacitance taken from five different LbL-MWNTs/MnOx MSC devi ces with error bars.

Figure S8. Self-discharging of an LbL-MWNTs/MnO_x MSC.

Figure S9. Capacity retention in dependence of time under ambient-air condition.

Figure S10. Photographs of LbL-MWNTs/MnOx MSC circuit on a PET film under various b ending conditions.