Supplementary Data

Gram-Scale Synthesis of rGO Wrapped Porous α-Fe₂O₃ as an Advanced Anode Material for Na-ion Batteries with Superior Cyclic Stability

Syam Kandula^a, Junho Bae^b, Jinhan Cho^c, Jeong Gon Son^{a, c*}

^aSoft Hybrid Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.

^bDepartment of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

^cKU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

*Corresponding author E-mail: jgson@kist.re.kr (Prof. J. G. Son).

Tel: +82-2-958-5317; Fax: +82-2-958-5309.

Characterization of the α -Fe₂O₃@rGO core@shell nanocubes

The phase purity of the α -Fe₂O₃@rGO core@shell nanocubes was analyzed using a highpower powder X-ray diffractometer (Rigaku, Japan) in a 20 range of 10-70° with a scan rate of 2° min⁻¹. Thermogravimetric analysis (TGA) of the samples was accomplished in an air atmosphere using a Q50 TGA analyzer (TA Instruments) at a temperature of 30-700°C with a heating rate 10°C min⁻¹. Raman spectroscopy of the samples was demonstrated using a Renishaw inVia spectrometer with a He:Ne laser ($\lambda = 633$ nm) in the wavelength range of 200-2,000 cm⁻¹. The N₂ adsorption/desorption isotherms of the α -Fe₂O₃@rGO core@shell nanocubes samples were determined at a temperature of 77 K (Belsorp-MAX, SBEL, Japan Inc.), and the specific surface area (SSA) was estimated using the BET method. The morphology of the α -Fe₂O₃@rGO core@shell nanocubes was examined by a field emission scanning electron microscopy (FE-SEM, Sigma 300, JEOL) and the transmission electron microscopy (TEM, Tecnai F20, FEI). The elemental composition was analyzed using energy dispersive analysis (EDS) coupled with FE-SEM and TEM instruments. The XPS analysis of the samples was performed using a K_a X-ray photoelectron spectrometer (Thermo Scientific Inc.) for the elemental composition and electronic/chemical state of the elements.

Electrochemical study of the α -Fe₂O₃@rGO core@shell nanocubes

The electrochemical performance of the α -Fe₂O₃@rGO core@shell nanocubes was studied using CR2032 coin-type cells. For the making of the working electrode, 80.0 wt.% of α -Fe₂O₃@rGO core@shell nanocubes were mixed with 20.0 wt.% of SWCNT (MEIJO eDIPS) in 5.0 mL of ethanol and sonicated for about 10 min. Afterward, a vacuum filter (PVDF, hydrophilic filter paper, 1.2 cm × 1.2 cm) was carried out and dried the electrodes at 80°C under a vacuum oven for overnight to evaporate the solvent molecules. The mass loading was about 1.0 mg cm⁻² for all the electrodes. For the fabrication of Na-ion half cells, metallic Nafoil (Na-cubes, Sigma-Aldrich) was employed as a counter electrode and 0.6 M sodium hexafluorophosphate (NaPF₆) in 1:1 wt.% ethylene carbonate (EC): propylene carbonate (PC) with 0.02 wt.% of fluoroethylene carbonate (FEC) was used as an electrolyte (50.0 µL). Here, a Whatman® glass microfiber filter (Grade GF/A) was employed as a separator. The fabrication of Na-ion half cells was carried out under an argon-filled glove box with below 0.1 ppm levels of oxygen and moisture. After the fabrication of cells, for a better interaction of electrolyte with a working electrode, cells were kept under aging for about 2 h. The cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) curves, as well as cyclic stability studies, were carried out in a potential window of 0.005-3.0 V vs. Na/Na⁺ using a multichannel battery tester (WMPG1000S, WonA Tech). The electrode kinetics were performed using electrochemical impedance spectroscopy (EIS) in the frequency range of 0.01 Hz to 100 kHz on Bio-Logic Science Instruments (SP-200) electrochemical workstation. The galvanostatic intermittent titration technique (GITT) analysis of the samples was carried out at a pulse time of 10 min with a rest time of 60 min at a 0.1 C rate.

Figure. S1 Digital images of (a) α -Fe₂O₃, (b) α -Fe₂O₃@rGO-10 wt.%, and (c) α -Fe₂O₃@rGO-20 wt.% powder samples.

Figure. S2 BET surface area plots of (a) α -Fe₂O₃, and (b & c) α -Fe₂O₃@rGO core@shell nanocubes.

Figure. S3 FE-SEM images (a) α -Fe₂O₃, and (b) PEI- α -Fe₂O₃ nanocubes.

Figure. S4 FE-SEM images of (a) α -Fe₂O₃/SWCNT, (c) α -Fe₂O₃@rGO-10 wt.%/SWCNT, (e) α -Fe₂O₃@rGO-20 wt.%/SWCNT samples before, and (b) α -Fe₂O₃/SWCNT, (d) α -Fe₂O₃@rGO-10 wt.%/SWCNT and (f) α -Fe₂O₃@rGO-20 wt.%/SWCNT samples after 20 cycles at 0.1 C-rate.

Figure. S5 SEM-EDS color mapping, and EDS spectra of α -Fe₂O₃@rGO-10 wt.% core@shell nanocubes.

Figure. S6 SEM-EDS color mapping, and EDS spectra of α -Fe₂O₃@rGO-20 wt.% core@shell nanocubes.

Figure. S7 (a & d) XPS survey spectrums of α -Fe₂O₃ and rGO, and (b & c) high-resolution XPS spectra of Fe₂p, and O1s of α -Fe₂O₃, and (e) high-resolution XPS spectra of C1s of rGO.

Figure. S8 (a) XPS survey spectrum, and (b-d) high-resolution XPS spectra of Fe2p, O1s, and C1s of α -Fe₂O₃@rGO-20 wt.% core@shell nanocubes.

Figure. S9 GCD plot of SWCNTs electrode at various C-rates with an electrode mass of 1.0 mg cm⁻².

Figure. S10 GITT plots of (a) α -Fe₂O₃, and (b) α -Fe₂O₃@rGO-20 wt.% samples, and (c) single titration curve of α -Fe₂O₃@rGO-10 wt.% sample during the discharge.

Figure. S11 FE-SEM images of (a) α -Fe₂O₃@rGO-10 wt.%, and (b) α -Fe₂O₃@rGO-20 wt.% core@shell nanocubes after the 650th cycle.

Table T1. Comparison of electrochemical performance of α -Fe₂O₃@rGO core@shell nanocubes with the reported Fe₂O₃/rGO materials (DEC = Diethyl Carbonate, Diglyme = Diethylene Glycol Dimethyl Ether, DMC = Dimethyl Carbonate, EC = Ethylene Carbonate, FEC = Fluoroethylene Carbonate, PC = Propylene Carbonate).

S.No	Electrode material	Electrolyte	Specific capacity	Rate capability	Cyclic stability	Reference
			(vs. Na, mAh g ⁻¹)	(mAh g ⁻¹)		
1	a-Fe ₂ O ₃ /rGO	1.0 M NaClO ₄ in 1:1	~ 700.0 at 0.1 C	~ 77.0 at 2.0 C	~ 310.0 at 0.1 C	[12]
	nanocomposite	EC:DEC			after 150 cycles	
2	α-Fe ₂ O ₃ @rGO	1.0 M NaPF ₆ in 1:1:0.05	~ 450.0 at 0.1 C	~ 92.0 at 1.6 C	~ 332.0 at 0.2 C	[13]
	nanorods	EC:DEC:FEC			after 300 cycles	
3	α-Fe ₂ O ₃ @C/rGO	1.0 M NaClO ₄ in PC	~ 720.0 at 0.05 C	-	~ 300.0 at 0.05 C	[19]
	nanocomposite	with 2 vol.% FEC			after 50 cycles	
4	N, S co-doped	1.0 M NaClO ₄ in 1:1	~ 670.0 at 0.1 C	~ 200.2 at 2.0 C	~ 440.0 at 0.1 C	[20]
	modified rGO/Fe ₂ O ₃	EC:DMC			after 110 cycles	
5	Fe ₂ O ₃ /rGO	1.0 M NaClO ₄ in 1:1	~ 251.9 at 0.1 C	~ 32.8 at 2.0 C	~ 289.0 at 0.05 C	[21]
	nanocomposite	EC:PC			after 50 cycles	
6	Fe ₂ O ₃ /rGO	1.0 M NaPF ₆ in 1:1	~ 500.0 at 0.1 C	~ 200.0 at 2.0 C	~ 500.0 at 0.05 C	[22]
	nanocomposite	EC:DEC with 5 % FEC			after 100 cycles	
7	Amorphous	$1.0 M N_0 SO_0 CE_0$ in	~ 561.0 at 0.1 C	~ 194.0 at 2.0 C	250.0 ot 0.1 C	[23]
	Fe ₂ O ₃ /rGO	Dialuma			~ 550.0 at 0.1 C	
	nanocomposite	Digiyille			arter 50 cycles	

8	Fe ₂ O ₃ /N-graphene	1.0 M NaClO ₄ in 1:1	~ 285.0 at 0.1 C	~ 132.0 at 1.0 C	~ 306.0 at 0.05 C	[24]
	nanocomposite	EC:DEC			after 50 cycles	
9	Fe ₂ O ₃ /N-graphene	1.0 M NaSO ₃ CF ₃ in	(29.4 + 0.1)	C ~ 297.4 at 2.0 C	~ 412.8 at 0.5 C	[45]
	nanocomposite	Diglyme	~ 038.4 at 0.1 C		after 100 cycles	
10	Mn-doped α-	1.0 M NaClO ₄ in PC	~ 150.0 at 0.1 C	~ 56.0 at 2.0 C	_	[46]
	Fe ₂ O ₃ /rGO					
	nanocomposite	with 2 wt. 70 FEC				
11	Fe ₂ O ₃ @N-C	1.0 M NaClO ₄ in PC	~ 412.6 at 0.1 C	~ 206.5 at 2.0 C	~ 473.7 at 0.1 C	[47]
	nanocomposite	with 5 vol.% FEC			after 100 cycles	
12	Fe ₂ O ₃ @N-C	1.0 M NaClO ₄ in 1:1	~ 248.0 at $0.1.C$	~ 100.0 at 2.5 C	~ 260.0 at 0.1 C	[48]
	nanocomposite	EC:PC	~ 240.0 at 0.1 C		after 150 cycles	
	M-Fe ₂ O ₃ @N-C	1.0 M NaClO ₄ in 1:1	~ 292.3 at 0.1 C	~ 166.0 at 2.0 C	270.0 of 0.1 C	[49]
13		EC:PC with 10 vol.%			~ 270.0 at 0.1 C	
	nanocomposite	FEC			after 100 cycles	
14			~ 970.2 at 0.1 C	~ 77.8 at 5.0 C	~ 586.9 at 0.1 C	Present work
	α-Fe ₂ O ₃ @rGO-10	0.6 M NaPF ₆ in 1:1 EC:PC with 5 wt. % FEC			after 100 cycles	
	wt.% core@shell				&	
	nanocubes				~ 98.2 at 0.1 C	
					after 650 cycles	