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Detailed Experimental Sections
Characterization

FT-IR spectra of the multilayers were obtained using a CARY 600 spectrometer (Agilent
Technology) in specular mode with a resolution of 4 cm™, and the collected data were plotted with
spectrum analysis software (OMNIC, Nicolet). FE-SEM and EDS data were obtained using an S-
4800 instrument (Hitachi). Transmission electron microscopy (TEM) data of synthesized NPs were
obtained using a Tecnai 20 instrument (FEI). UV-vis spectra of the LbL-assembled multilayer on
quartz glass slides were analyzed using a Lambda 35 instrument (Perkin EImer) within a scan range
of 200 — 800 nm. The quantitative deposition of multilayers was monitored through a quartz crystal
microbalance QCM (QCM 200, SRS). The mass loading of each layer was converted from the

QCM frequency change using the Sauerbrey equation.®™ The electrical conductivity of the
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electrode was monitored by four-probe measurement. The temperature dependence of the electrical
conductivity of LbL-assembled Au NP-coated paper and Ni-EPs was measured using a physical
property measurement system (PPMS-9, Quantum Design) over a temperature range from 2 to 300

K.
Electrochemical Measurements

The electrochemical investigation for all electrodes was conducted in a three-electrode
configuration through an Ivium-n-stat (Ivium Technologies). The Ag/AgCI (3 M NacCl) electrode, Pt
coil electrode, and pseudocapacitive NP/Ni-EP (active area of 1 cm?) were used as the reference,
counter, and working electrodes, respectively in 0.5 M Na,SO, electrolyte. CV and GCD
measurements were all investigated in the potential range of 0 V to 1 V. EIS measurements were

performed in the frequency range of 100 kHz to 0.1 Hz with a perturbation amplitude of 0.01 V.

The electrochemical capacitance of the MnO/Ni-EP electrode was calculated with the

following equations.*

Specifi it C —f Lv)ay for CV 1

ecific capacitance (C) = or

pecific cap © =" 1,5 (forey) ¢
- : IAt : :

Specific capacitance (C) = _AV (for galvanostatic charge/discharge measurements) 2)

where i, v, AV, I, and At represent the current, scan rate (mV s*), operating voltage window
(potential range), applied current density, and discharge time, respectively. The variable S in Eq. (1)

indicates the active area of the electrode or mass of the active material.
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Figure S1. a) HR-TEM images of TOA-Au NP with a diameter of approximately 8 nm. b) UV-Vis
spectra of TOA-Au NP in toluene. The TOA-Au NP in toluene exhibits the Surface resonance
absorption peak at 527 nm. ¢) UV-Vis spectra of (TOA-Au NP/TREN), multilayers as a function of
the bilayer number (n). In this case, the absorption peaks of surface plasmon resonance spectra were
strongly red-shifted with increasing the bilayer number (n) of (TOA-Au NP/TREN), multilayers. d)

QCM data for the (TOA-Au NP/TREN), multilayer films as a function of the bilayer number (n).
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Figure S2. Fourier transform infrared (FT-IR) spectra and schematic illustration of the (TOA-Au
NP/TREN), multilayer films as a function of the bilayer number (n). As shown in the FT-IR spectra,
the deposition of TOA-Au NP onto the poly(ethylene imine) (PEI)—coated Si substrate generated C-
H stretching peaks from the long alkyl chains of TOA ligands at 2850 ~ 2950 cm™ (herein, PEI
containing large amounts of amine groups have a high affinity to the bare surface of Au NPs). When
TREN was further deposited onto the outermost TOA-Au NP layer, the C-H stretching peaks
disappeared, while the N-H bending peaks at 1550 ~ 1650 cm™ and N-H stretching peaks at 3300 —
3500 cm™ gradually increased. Therefore, the alternating deposition of TOA-Au NP and TREN
repeated the generation and disappearance of the C-H stretching peaks originating from the TOA

ligands when the outermost layer was changed from TOA-Au NP to TREN and vice versa.
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Figure S3. Thicknesses of the (TOA-Au NP/TREN), multilayer films as a function of the bilayer
number (n). The inset show the FE-SEM image of TOA-Au NP/TREN)n=2 and 10 multilayer films. In
this case, the adsorption times of TOA-Au NPs in toluene and TREN in ethanol were 30 and 10 min,
respectively. In this case, the thickness per bilayer was measured to be approximately 4 nm.
Although the bilayer thickness is much thinner than the diameter of the individual TOA-Au NPs,
subsequent depositions filled in the areas with insufficient surface coverage originating from sub-

monolayer adsorption.
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Figure S4. FE-SEM images of a) bare paper and b) (TOA-Au NP/TREN), multilayer-coated paper.
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Figure S5. a) Photographic images of (TOA-Au NP/TREN),-coated paper electrodes with LED
connection under crumpled, wrapped, and origami states. b) Relative electrical conductivity of

(TOA-Au NP/TREN)4-coated paper as a function of bending cycles.
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Figure S6. Photographic image of two-electrode configuration-based Ni electroplating setup. Au
NP-coated paper was connected to the circuit as a cathode after being framed with Ni plate and

99.99% Ni foil was connected as an anode.
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Figure S7. Thickness of electroplated Ni layer onto (TOA-Au NP/TREN),-coated cotton as a

function of electroplating time at the fixed current density of 250 mA cm™.
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Figure S8. Plots of the conductivity (Inc) vs. temperature (K™*) for (TOA-Au NP/TREN),-paper

and Ni-EPs (electroplating time = 2 and 10 min).
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Figure S9. FE-SEM image of Ni-EP (i.e., electroplated Ni/(TOA-Au NP/TREN),-coated paper).
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Figure S10. Incremental intrusion area of mercury versus pore diameter for a) bare paper an

d b) Ni—EP using mercury porosimetry technique.
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Figure S11. a) HR-TEM images of TOA-Cu NP with a diameter of approximately 8.5 nm.

Photographic images of b) bare, ¢) Cu NP-coated, and d) Ni-electroplated cotton.
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Figure S12. a) HR-TEM image of TOA-Ag NP with a diameter of approximately 8 nm.

Photographic images of b) bare, c) Ag NP-coated, and d) Ni-electroplated cotton.
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Figure S13. a) HR-TEM images of OA-MnO NPs. b) QCM data of the (OA-MnO NP/TREN),
multilayer films as a function of the bilayer number (m). ¢) FT-IR spectra of the (OA-MnO
NP/TREN),, multilayer films with increasing bilayer number (m). As mentioned earlier (see Figure
S2), the generation and disappearance of the C-H stretching peaks (from the long alkyl chains of
OA ligands at 2850 — 2950 cm™) were repeated through the ligand-exchange reaction between OA
ligands and TREN. Additionally, the N-H bending peaks at 1550 — 1650 cm™ and N-H stretching
peaks at 3300 — 3500 cm™ gradually increased. The change of COO" stretching peak of OA ligands
was monitored at 1420 cm™ because of the overlap of the COO" stretching peak at 1520 cm™ with

N-H bending peaks.
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Figure S14. Photographic images of the water droplets on the 20-MnO NP/Ni-EP electrode over a

short period of time.
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Figure S15. Tilted FE-SEM and EDS mapping images of 20-MnO NP/Ni-EP.
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Figure S16. TGA data of (OA-MnO NP/TREN), nanocomposite multilayers.
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Figure S17. a) CVs of the 20-MnO NP/Ni-EP electrode as a function of scan rate. b) CVs of the 20-

MnO NP/nonporous electrode as a function of scan rate.
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Figure S18. Galvanostatic charge/discharge (GCD) curves of the 20-MnO NP/Ni-EP electrode at

various current densities in the range of 2-20 mA cm? (3.2-32 Ag™).
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Figure S19. Galvanostatic charge/discharge (GCD) curves of the 60-MnO NP/Ni-EP electrode at

various current densities in the range of 2-20 mA cm™ (1.1-10.8 Ag™).
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Figure S20. Cycling retention of the 60-MnO NP/Ni-EP electrode at 10 mA cm™ (5.4 A g™). The

inset shows the GCD curves measured after 1% and 1000™ cycles.
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Figure S21. Areal capacitances of electrodeposited MnO,-based Ni-EP electrodes with various
mass loading densities. In the case of MnO,-electrodeposited Ni-EP electrode with a mass loading
of 4.18 mg cm™ (for electrodeposited MnO,), its loading mass was similar to that of 140-MnO

NP/Ni-EP electrode (mass loading of LbL-assembled MnO NPs ~ 4.18 mg cm).
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Figure S22. a) CV curves of bare Ni-EP current collector number at a scan rate of 50 mV s™ as a
function of cycling number. b) CV curves of the 20-MnO NP/Ni-EP electrode, 20-MnO
NP/nonporous electrode, and bare Ni-EP electrode at a scan rate of 50 mV s™ (for convenience,

Figure 5c is re-used)
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Figure S23. a) GCD curves of the 60-MnO NP/Ni-EP electrode with Au NP layers at various
current densities in the range of 2-20 mA cm™ (1.1-10.8 A g). b) Areal capacitances of 60-MnO
NP/Ni-EP electrode with Au NP layers, 60-MnO NP/Ni-EP electrode, and 60-Au NP/Ni-EP

electrode as a function of current densities (2-20 mA cm).
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Figure S24. Cycling retention of the 60-MnO NP/Ni-EP electrode with Au NP layers at 10 mA cm™

(5.4 A g™). The inset shows the GCD curves measured after 1% and 1000™ cycles.
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Figure S25. GCD curves of a) (MnO NP/TREN);o/(COOH-MWCNT/TREN);o multilayer-coated
Ni-EP electrode (i.e., 10-MnO NP-MWCNT/Ni-EP) with Au NP layers and b) 10-MnO NP/Ni-EP
electrode with Au NP layers. ¢) Areal capacitance and Coulombic efficiencies of 10-MnO NP-
MWCNT/Ni-EP with Au NP layers and 10-MnO NP/Ni-EP with Au NP layers at various current

densities in the range of 2-20 mA cm™.
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Figure S26. a) CV curves and b) areal capacitances of 20-Fe;O0, NP/Ni-EP electrode as a function

of scan rate.
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Figure S27. a) Photographic images of the solid-state ASC under flat (initial) and bent state. b) CV
and c) Nyquist plots of the solid-state ASC at a scan rate of 50 mV s recorded under flat (initial)
and bending conditions in the frequency range 100000 Hz to 0.1 Hz, measured at 0.1 V (amplitude
potential ~ 5 mV). d) GCD curves, e) areal capacitance, and Coulombic efficiency values of the

solid-state ASC at various current densities of 2-10 mA cm? (0.96-9.8 A g™).
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