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Figure S1. XPS spectra of pristine PVDF and F-PVDF (a) elemental survey (b) O 1s core electron 

spectra. 
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Figure S2. FT-IR spectra of (a) pristine PVDF and F-PVDF powder and (b) PVDF/NMP (gray), 

F-PVDF/NMP (blue), and F-PVDF/acetone (red) film. 
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Figure S3. Deconvolution of XRD spectra of pristine PVDF/NMP, F-PVDF/NMP, and F-

PVDF/acetone. 
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Figure S4. Adhesion force measurements via peel testing of the dried PVDF film from NMP and 

dried F-PVDF film from acetone while immersed in electrolyte.
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Figure S5. SEM images of the stretchable (a) PCOG/LTO composite anode and (b) SCC-Ni 

composite at unstained and 50% strained states.
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Figure S6. The resistance retention of the (a) PCOG/LTO and PCOG/LFP composite electrodes 

and (b) SCC-Ag and SCC-Ni composited current collectors as function of repetitive 

stretching/releasing cycles at 50% strain.
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Figure S7. Swelling ratio measurement of PIB, SEBS, PDMS, and PU under saturated vapor of 

6M LiPF6 electrolyte in 1:1:1 EC:DMC:DEC carbonate mixture solvents. The thickness changes 

of films the films in-situ measured by Filmetrics F20 in sealed chamber (9.5 ml) with quartz lid.  
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Figure S8. (a) Resistance changes versus strain curves of the SCC-Ag composites. In this study, 

the Ag particles of three different sizes were used to determine the effect of their sizes on the 

electrical conductivity and stability: (1) Ag nanoparticles smaller than 150 nm (Ag nano), (2) Ag 

microparticles with a size of 2 - 3.5 μm (Ag microA), and (3) Ag microparticles with a size of 5 - 

8 μm (Ag microB). In case of unimodal system, only Ag microB was used, while the mixture of 

Ag nano and Ag microB in a weight ratio of 4:6 was utilized for bimodal system. The trimodal Ag 

system is a mixture of Ag Nano, Ag microA and microB in a weight ratio of 2:3:5. (b) Resistance 

changes versus strain curves of the SCC-Ag composites with and without 0.2 wt% of multiwalled 

carbon nanotubes. 
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Figure S9. Photographs of the stretchable gel electrolyte based PVDF-HFP PCOG films without 

and with strain. 
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Figure S10. Nyquist plots and bulk resistances of the cell (strainless steel/separator/strainless steel) 

for 1 M LiPF6 electrolyte soaked Celgard 2400 (PP, black, 1.4 Ω), PCOG separators (red, 0.8 Ω) 

and stretch fabric (blue, 9.2 Ω).
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Figure S11. Comparison of electrolyte uptake by PP separator, PCOG separator, and stretch fabric. 
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Figure S12. Rate performance and Coulombic efficiencies of (a) PCOG/LFP, (b) PCOG/LTO, 

and (c) full cell.
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Figure S13. Electrochemical charge/discharge curves of (a) PCOG/MCMB(mesocarbon 

microbeads) anode (same weight ratio with PCOG/LTO electrode) with half-cell configuration 

with lithium metal electrode at 0.5 C and (b) PCOG/LFP and PCOG/MCMB full cell between 2 

and 4.2 V at 0.5 C with 1 M LiPF6 in EC/DEC/DMC electrolyte. 
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Figure S14. Photographic image of a new ionic liquid (1-Ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI])) containing physically crosslinked ion-gels 

(PCIG)/LFP composite cathode and its electrochemical performance of LIB full cell with a 

PCIG/MCMB anode and LiTFSI/[EMIM][TFSI] (1:1 weight ratio) electrolyte at 0.5 C.
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Figure S15. Rate performance, cycling performance and Coulombic efficiency of fully stretchable 

LIB full cell with stretchable encapsulation.
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Figure S16. Photographic image of stretchable LIB full cells with PCOG/LFP cathode and 

PCOG/MCMB anode under the various bending conditions and its electrochemical performances 

at 0.5 C.
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Figure S17. SEM images of the interfaces between the stretchable (a) PCOG/LTO composite 

anode and stretchable current collector with Ag particles and (b) PCOG/LFP composite cathode 

and stretchable current collector with Ni particles before and after repetitive stretching/releasing 

at 50% for 100 cycles. 
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Figure S18. EDS spectrum of the cross-sectioned printed stretchable battery on stretch fabric with 

SCC-Ni/PCOG-LFP/stretch fabric/PCOG-LTO/SCC-Ag laminated structure.
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Figure S19. Rate capability, cycling performance and Coulombic efficiency of fabric-based 

stretchable LIB.
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Figure S20. Photographic image of 2 series printed stretchable LIB with our institute name onto 

stretch fabric and dimensions of electrode pattern.
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Figure S21. Photographic image of disassembled smart watch without commercial battery.
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Table S1. Comparison of our all-component intrinsically stretchable battery with other non-aqueous stretchable lithium-ion batteries reported in previous 
research. *non-stretchable, **non-participant for energy storage, N/A = not applicable, N/R = not rated.

Electrode Materials
Stretchable 

approach Cathode Anode Current 
collector

Electrolyte Encaps
ulant

Capacity of 
stretchable 
electrodes 

Operation 
voltage Energy density

Strain 
stability 
(C/C

0
)

Repetitive 
strain stability 

(C/C
0
)

Long-term 
stability
(C/C

0
)

Intrinsic
128 mAh g-1 

1.5 mAh cm-2

@ 0.5 C

2.3 mWh cm-2

57.5 mWh cm-3

0.94 
@50%, 

0.5 C

0.89 @1000 
times, 50%, 0.5 

C  

0.92 @110 
cycles, 0.5 C 

in air

(on stretch 
fabric)

LTO 
/PCOG 132 mAh g-1 

1.54 mAh cm-2 @ 
0.5 C

1.8 V

2.8 mWh cm-2 0.88 @50% 
0.5 C -

0.90 @80 
cycles, 0.5 C 

in air 
Our 
work

(high voltage)

LFP 
/PCOG

graphite 
/PCOG

Stretchable 
Ag/Ni 

particle
/PIB 

composite

1 M LiPF6 with 
PCOG 

(liquid+gel)
 PIB

142 mAh g-1 

@ 0.5 C
3.2 – 3.35 

V 2.6 mWh cm-2
0.93 @2 mm 

bending 
radius, 0.5 C

- -

[1] Intrinsic LFP 
/SLIC

LTO 
/SLIC Au/SLIC LiTFSI/SLIC PDMS

~50 mAh g-1

@ 0.5 C
108 mAh g-1, 
1.1 mAh cm-2 

@ 0.1 C

1.7 – 1.8 V - 0.92 @ 
70%, 0.1 C

0.89 @ 10 
times, 50% N/R

[2]
Wavy current 

collector &
Sticky separator

LCO Graphite Al/Cu 
foils*

1 M LiPF6 
(liquid) PDMS 2.2 mAh cm-2 @ 

0.5 C 3.6 V 110 mWh cm-3 0.91 @ 50% No repetitive 
strain test

0.85 @ 60 
cycles, 0.5 C

[3]
Pre-strain 

Wavy
(450%)

LMO/ 
PDMS**

(~40%)

LTO/
PDMS**

(~40%)
N/A LiTFSI/PEO 

(gel) PDMS 0.12 mAh cm-2 @ 
1 C 1.55 V 1.6 mWh cm−2 0.97 @ 

400%
0.97 @200 
times, 400%

0.87 
@ 100 

cycles, 1 C

[4] Porous PDMS
LFP/
CNT

/PDMS**

LTO/
CNT

/PDMS**
N/A

1 M LiPF6 
PVDF-HFP 
(liquid+gel)

PDMS 0.64 mAh cm-2 @ 
0.532 C 1.7 V - 0.88 @ 50%

0.075 C

0.84 @100 
times, 50%

0.075 C
N/R

[5] Rigid Islands 
on Ecoflex LCO LTO Al/Cu* LiClO4/PEO

(gel) Ecoflex
1.1 mAh cm-2 @ 

0.5 C (areal coverage 
33% (catho), 17% 

(ano)

2.3 V - ~1 @ 300% N/R ~0.75 @
20 cycles

[6] Wire LMO/ 
CNT

LTO/ 
CNT N/A LiTFSI/PEO 

(gel)

Heat-
shrinkabl

e tube

138 mAh g-1 
0.0028 mAh cm-1 

@ 0.01 mA
2.2 V 17.7 mWh cm-3 0.8 @ 100% 0.9 @ 200 

times, 100%

0.85 @ 100 
cycles, 0.05 

mA

[7]
our 

previo
us

Reentrant 2D 
cellular

LFP/CN
T-rGO

LTO/CN
T-rGO N/A

1 M LiPF6 
PVDF-HFP 
(liquid+gel)

Butyl 
rubber

140 mAh g-1 @ 0.5 
C, 5.05 mAh cm-2 

@0.2 C
1.8 V 102.4 mWh g–1 0.94 @ 

50%, 3 C
0.93 @500 
times, 50%

0.957 @100 
cycles, 3 C
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