Supporting Information

Sequentially Coated Wavy Nanowire Composite

Transparent Electrode for Stretchable Solar Cells

Hyun Jeong Kwon[‡], Geon-U Kim[‡], Chulhee Lim, Jai Kyeong Kim, Sang-Soo Lee, Jinhan

Cho, Hyung-Jun Koo, Bumjoon J. Kim*, Kookheon Char*, Jeong Gon Son*

H. J. Kwon, J. K. Kim, S.-S. Lee, Dr. J. G. Son Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea E-mail: jgson@kist.re.kr,

H. J. Kwon, Prof. K. Char School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea E-mail: khchar@snu.ac.kr,

G.-U Kim, C. Lim, Prof. B. J. Kim Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea E-mail: <u>bumjoonkim@kaist.ac.kr</u>,

Prof. J. Cho Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea;

Prof. J. Cho, Prof. J. G. Son KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea

Prof. H.-J. Koo Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology

[‡]These authors contributed equally to this work.

Figure S1. Performance of the PEDOT:PSS/EMIM:TCB sequentially introduced wavy nanowire network after thermal annealing at 60 °C for 1 hr under the change in resistance according to uniaxial tensile strains.

Figure S2. (a) B 1s, (b) C 1s, (c) Ag 3d XPS spectra of pure PEDOT:PSS coated nanowire network, PEDOT:PSS and ionic liquid mixed composite films, and sequentially coated nanowire/PEDOT:PSS/ionic liquid composite film.

Figure S3. (a) UPS spectra of nanocomposite films according to various ionic liquids.

(b) Tunable work function of nanocomposite at different Ionic liquids.

Year	Device structure	Active Layer	PCE (%)	Stretchability	Ref.
2017	PUA-AgNW/ SWNT/PEDOT:PSS/ Active Layer/ PEIE/SWNT/ AgNW-PUA	PTB7-Th: PC ₇₁ BM	2.90	74% PCE retention at 100% strain	53
2021	PET/AgNW/ PEDOT:PSS/Active Layer/EGaIn	P3HT:PC ₆₁ BM	2.51	33% PCE retention at 37% strain	- 62
		P3HT: BCP:PC ₆₁ BM, (1:0.05:0.9)	4.03	60% PCE retention at 37% strain	
2021	TPU/AgNW/ PEDOT:PSS/Active Layer/EGaIn	PTB7-Th: IEICO-4F	10.1	 73% PCE retention at 20% strain/ 47% PCE retention after 300 cycles at 20% strain 	50
2022	TPU/S-NPI/ PEDOT:PSS/Active layer/PNDIT-F3N-Br /EGaIn	PM6-OEG5:Y6- BO:N2200 (1:1:0.2)	11.3	89% PCE retention at 20% strain	This work

Table S1. Device structures and mechanical and photovoltaic performances of reportedAgNW-based SOSCs.