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ABSTRACT: Self-healing polymer electrolytes are essential for
overcoming the limitations of liquid and solid electrolytes by
offering superior mechanical robustness, enhanced safety, and
repeated processability. Herein, we present thermally reprocessable
and self-healing thermosets for solid polymer electrolytes using
sulfonylimide-based anionic monomers and thermo-reversible
Diels−Alder chemistry. Six different types of linear copolymers
are synthesized by varying the chemical structures of furan-
containing monomers and the proportion of electrolytic
components. Then, bismaleimide cross-linkers are introduced to
form thermally reversible cross-linked networks. We investigate the
effect of the comonomer ratio and monomer structure on the
thermomechanical and electrochemical properties of these polymers. Furthermore, we evaluate the mechanical and ion conducting
properties after up to 30 thermal reprocessing cycles. Our findings demonstrate the potential of these thermosets as promising
candidates for high-performance solid polymer electrolytes in lithium-ion batteries.
KEYWORDS: polymer electrolytes, single-ion conducting membranes, recyclable thermosets, sustainable polymers, self-healing

1. INTRODUCTION
Electrolytes play a crucial role in facilitating the movement of
ions between electrodes, making them essential components
for batteries,1 fuel cells,2,3 and other electrochemical devices.4,5

While liquid electrolytes are widely used because of their high
ionic conductivity, they become volatile at higher temperatures
and possess flammability risks. Moreover, devices using liquid
electrolytes tend to be bulkier and require extra space. As
potential alternatives to replace liquid electrolytes, solid
polymer electrolytes (SPEs) emerge as highly sought-after
candidates since they have excellent stability, low cost, and ease
of fabrication.6−8 Particularly in lithium-ion batteries (LIBs),
the use of SPEs can reduce the formation of lithium dendrites
in the anodes, which is closely related to safety concerns
associated with LIBs.9−11

When designing ion conducting polymers for solid electro-
lytes, polymer electrolytes need to be mechanically durable to
serve as both the electrolyte and separator.12 Typically,
chemically cross-linked thermosetting polymers are used
owing to their high mechanical and chemical stabilities, but
they are not compatible with current manufacturing methods
for large-scale production of electrochemical devices such as
slurry casting and roll-to-roll technologies.13 As the proper
recycling of electrochemical devices has become increasingly
important at the end of their lifespan for future sustainability
consideration,14 it is crucial to develop recyclable polymer
electrolytes that possess excellent mechanical properties and

reprocessability while retaining their properties. Furthermore,
their self-healing and robust characteristics enable them to
compensate for volume changes in the electrodes through
elastic and plastic deformation, providing additional safety.15,16

Dynamic covalent chemistry, which combines the stability of
covalent bonds with the reversibility of noncovalent bonds, is a
powerful tool for designing chemically recyclable and self-
healing polymers.17,18 Commonly, gel polymer electrolytes
have been prepared by mixing a dynamic covalent polymer
with some additives. The polymer matrix provides the self-
healing and chemical recycling function, and the additives such
as plasticizers with lithium salts facilitate the transport of
lithium ions.19,20 Some ionic liquids (ILs) have been used as
suitable plasticizers such as 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), due to
their good ionic conductivity and electrochemical stability.21

However, a high amount of the plasticizer can impair the
thermal stability, reduce the mechanical strength, and most
importantly increase the risk of safety hazards. Additionally, for
those binary salts, both lithium ions and their counteranions
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migrate between electrodes during the charging and discharg-
ing process.22 Since the conductivity of binary salt conductors
is dominated by the motion of anions, the fraction of current
carried by lithium ions (tLi

+) is relatively low. The
accumulation of anions at the interfaces between the electrode
and electrolyte also causes power loss in the battery. Therefore,
the free movement of anions needs to be limited or eliminated
by covalently attaching anions to the backbone chains of the
host polymers to form single-ion conductors.23

Ion conduction in polymer electrolytes is strongly correlated
with the local segmental motion of the polymers.24,25 As a
result, solid-state single-ion conductors have been mainly made
using polymers with a low glass transition temperature (Tg),
such as poly(ethylene oxide) (PEO). The PEO units possess
good donor ability for lithium ions and high chain flexibility,
which are crucial for facilitating lithium-ion transport. For
instance, incorporating PEO units into the backbone or
grafting as side chains of polymer electrolytes significantly
increased the diffusivity and ionic conductivity of the lithium
ion compared to the electrolytes without PEO units.26

Furthermore, numerous strategies have been reported to
enhance the ionic conductivity of polymer electrolytes. These
approaches include controlling phase-separated morpholo-
gies,27,28 altering anionic structures,29−32 engineering side
chains,33 and incorporating additives.34

Herein, we demonstrate thermally recyclable and single-ion
conducting thermosets for SPEs using sulfonylimide-based
anionic monomers and thermo-reversible DA chemistry
(Scheme 1.). Linear random copolymers are synthesized with
lithium 4-styrenesulfonyl(trifluoromethylsulfonyl)imide
(LiSTFSI) and furan-containing monomers. Two types of
furan-containing monomers are incorporated to investigate the
effect of EO moieties for the conductivity of the lithium ion:
furfuryl methacrylate and poly(ethylene glycol) methacrylate
(PEGMA, Mn = 360 g mol−1) terminated with a furan group.
Then, bismaleimide cross-linkers are mixed with the linear
polymers to prepare thermo-reversible cross-linked networks.
We investigated the effect of the comonomer ratio and
monomer structure on thermomechanical and electrochemical
properties. Furthermore, the mechanical and ion conducting
properties are evaluated after multiple recycling processes.

2. EXPERIMENTAL SECTION
2.1. Materials. Unless otherwise stated, all reagents were

purchased from a commercial source and used as received. Sodium
4-vinylbenzenesulfonate (≥90%, Sigma-Aldrich) and azobis(2-meth-
ylpropionitrile) (AIBN) were recrystallized in anhydrous ethanol/
distilled water (9:1, v/v) and methanol, respectively. Polyethylene
glycol methacrylate (PEGMA, Mn = 360 g mol−1, Sigma-Aldrich) and
furfuryl methacrylate (FMA, 97%, Sigma-Aldrich) were passed
through a column of basic alumina to remove inhibitors. The
PEGMA was further dried overnight in a vacuum oven at 30 °C prior
to use.
2.2. Synthesis of Lithium (4-Styrenesulfonyl) -

(trifluoromethanesulfonyl)imide (LiSTFSI). LiSTFSI was synthe-
sized following the previous studies with some modification (Scheme
S1).35,36 Anhydrous acetonitrile (15 ml) and dimethylformamide
(DMF, 0.25 ml) were added into a round-bottom flask. Oxalyl
chloride (0.86 ml, 0.01 mol, 1 equiv) was mixed with the solvent and
stirred for 1 h at room temperature. Sodium 4-vinylbenzenesulfonate
(2.1 g, 0.01 mol, 1 equiv) was added to the solution at 0 °C and
stirred for 2 h, followed by further stirring for 3 h at room
temperature. Then, trifluoromethanesulfonamide (1.5 g, 0.01 mol, 1
equiv) and trimethylamine (0.88 ml, 0.01 mol, 1 equiv) were injected
and stirred for 30 min at 0 °C. After 30 min, the solution was stirred
overnight at room temperature. The solvent was completely removed
and washed with dichloromethane, 4 wt % NaHCO3 solution, and 1
M HCl. After that, the organic layer was collected and dried in a
vacuum oven. The resulting product was dissolved in 20 ml of DI
water, and LiOH (0.63 g, 0.015 mol, 1.5 equiv) was added. The
solution was stirred overnight, filtered to remove excess lithium salt,
and dried in a vacuum (2.8 g, 8.9 mmol, 87%). The characterization
data are provided in the Supporting Information (Figure S1).
2.3. Synthesis of Furan-Terminated Polyethylene Glycol

Methacrylate (PEGFMA). PEGFMA was prepared according to
literature procedures (Scheme S2).37 Dichloromethane (DCM, 20
ml) and PEGMA (3.6 g, 0.01 mol, 1 equiv) were injected in an Ar-
purged round-bottom flask. Then, 2-furoyl chloride (1.0 ml, 0.01 mol,
1 equiv) was added with additional DCM (10 ml). After the mixture
was cooled to 0 °C in an ice bath, pyridine (0.80 ml, 0.01 mol, 1
equiv) was injected dropwise and stirred for 24 h at room
temperature. Once the reaction was completed, the mixture was
washed with water several times. The organic layer was collected, and
the solvent was evaporated, resulting in a viscous yellow liquid (4.2 g,
9.2 mmol, 92%). The characterization data are provided in the
Supporting Information (Figure S2).
2.4. Synthesis of Poly(LiSTFSI-co-FMA) and Poly(LiSTFSI-co-

PEGFMA). Three types of poly(LiSTFSI-co-FMA) (L) and poly-
(LiSTFSI-co-PEGFMA) (LP) were synthesized by changing the

Scheme 1. Schematic of Thermally Reprocessable and Self-Healing Polymer Electrolytes
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molar contents of furan-containing monomers (Scheme 2). The
molecular weight, molar content of FMA or PEGFMA, and thermal
stabilities of each polymer are summarized in Table 1. The molar
content of LiSTFSI (electrolytic part) increases with each sample
number.

The polymerization procedure used for LP3 proceeded as follows.
Anhydrous DMF (20 ml) was injected in an Ar-purged round-bottom
flask and heated to 60 °C. AIBN (0.022 g, 0.013 mmol, 1.0 equiv) was
dissolved in anhydrous DMF (5 ml) and injected to the flask. After
stirring for 10 min, the solution of LiSTFSI (1.3 g, 3.9 mmol, 300
equiv) and PEGFMA (0.16g, 0.35 mmol, 27 equiv) dissolved in
anhydrous DMF (5 ml) was added. The mixture was stirred for 24 h
at 60 °C. The polymer was precipitated in anhydrous diethyl ether
(300 ml) and dried under vacuum. The dried product was redissolved
in deionized water (20 ml), followed by dialysis against distilled water
using a dialysis membrane (cutoff molecular weight = 2 kDa). Finally,
the polymer solution was freeze-dried to obtain a yellow powder. The
characterization data are provided in the Supporting Information
(Figures S3−S8).
2.5. Preparation of Thermally Recyclable and Single-Ion

Conducting Thermosets. Each linear polymer was dissolved in
anhydrous DMF (5 ml). Then, 4,4′-bismaleimidodiphenylmethane
was added at an equivalent molar ratio to the furan functional groups
present in the polymer. The mixture was stirred for 10 min and
poured onto a Teflon plate. The solution was dried overnight in a
vacuum oven at 70 °C to get cross-linked polymers (xLs and xLPs).
2.6. Characterization. 1H NMR, 13C NMR, and 19F NMR

spectra were measured with DMSO-d6 as the solvent (400 MHz,
Bruker Avance 400 Ultrashield, Bruker). Spectra were referenced to
the residual solvent peaks (1H NMR: 2.50 ppm, 13C NMR: 39.51
ppm). The molecular weights of linear polymers were characterized
by gel permeation chromatography (GPC, Ultimate 3000, Thermo-
fisher Scientific) with water as an eluent at 25 °C. Pullulan standards
were used for molecular weight calibration. Fourier transform infrared
spectra (FT-IR, 3 MIR FT-IR Spectrometer, PerkinElmer) were
recorded over the range 550−4000 cm−1. The thermal stability of
linear polymers was measured by thermogravimetric analysis (TGA,

Q50, TA Instrument) from 25 to 900 °C at a heating rate of 10 °C
min−1. Differential scanning calorimetry (DSC, DSC 4000,
PerkinElmer) analyses were performed from 25 to 180 °C with a
heating rate of 2 °C min−1 under a nitrogen atmosphere. Bar-shaped
specimens (20 × 10 × 5.0 mm) were prepared, and uniaxial tensile
tests were performed using a dynamic mechanical analyzer (DMA,
Q800, TA Instruments) at a speed of 5 mm min−1. At least five
samples were tested, and average values with standard deviation were
calculated. Rheological properties were determined with a rotational
rheometer (MCR 302, Anton Parr, Austria). The samples were
trimmed to a 25 mm diameter and placed between plates with a 0.5
mm gap. The frequency, strain, and temperature ranges were set at 1
Hz, 0.5%, and −20 to 180 °C, respectively. The stress−relaxation
behavior of xLPs with xLs as a function of temperature was measured
to determine the relaxation activation energy (Ea) for rDA reaction.
The relaxation modulus was derived based on the Maxwell model

=G t G e( ) t
0

( / ) (1)

where G(t), G0, and t are the relaxation modulus, initial modulus, and
time, respectively. τ is the characteristic relaxation time, which is
defined at the time when G(t)/G0 equals 1/e. Since τ* follows the
Arrhenius law, the following equation can be used to calculate the
Ea.

38

* = +
E

RT
ln ln 0

a
(2)

2.7. Electrochemical Properties. The ionic conductivity of all
samples was determined by electrochemical impedance spectroscopy
(EIS) on an electrochemical workstation (Autolab, Metrohm, Swiss)
at a constant temperature (40, 50, 60, 70, and 80 °C). The frequency
range was from 0.1 to 106 Hz with an AC potential amplitude of 5
mV. The ionic conductivity was calculated according to the following
equation (eq 3)

= D
R Sb (3)

where D is the distance between two stainless-steel electrodes and S is
the contact area between the polymer membrane and the electrodes.
The bulk resistance (Rb) was obtained from the Nyquist plot at the
fitting model. The electrochemical stability window of samples was
measured at room temperature using linear sweep voltammetry
(LSV). A cell was assembled by sandwiching the polymer membrane
between two stainless-steel disks, and the measurement was carried
out from 0 to 7.8 V at a scanning rate of 1.0 mV s−1. The tLi+ of the
electrolytes was evaluated according to the method proposed by
Abraham et al.39 A membrane cell was assembled with stainless-steel
electrodes, and a small polarization potential (ΔV) of 10 mV was
applied to record the initial current (I0) and the steady-state current
(ISS) at room temperature. Meanwhile, electrochemical impedance

Scheme 2. Synthetic Scheme for (a) Ls and (b) LPs

Table 1. Poly(LiSTFSI-co-FMA) (L) and Poly(LiSTFSI-co-
PEGFMA) (LP) Synthesized in This Study

sample Mn (kg mol−1) Đ electrolyte ratio T5% (°C)

L1 7.5 2.45 0.49 153
L2 6.6 2.48 0.65 325
L3 13 2.22 0.85 429
LP1 11 2.48 0.45 171
LP2 9.8 2.35 0.70 298
LP3 8.3 2.23 0.90 379
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spectroscopy was performed to examine the initial and steady-state
values of the interfacial resistances (RI0, RISS) and the bulk resistances
(Rb0, RbSS) before and after polarization by applying a 5 mV amplitude
between 105 and 10−1 Hz. The tLi+ was determined using eq 4

=+t
I R V I R
I R V I R

( )
( )Li

SS bSS 0 I0

0 b0 SS ISS (4)

3. RESULTS AND DISCUSSION
3.1. Characterization of Linear Copolymers. Two types

of linear single-ion conducting polymers (Ls and LPs) were
synthesized by free-radical polymerization, and their chemical
structures were analyzed by 1H NMR spectra (Figures 1, S3−

S8). The successful incorporation of LiSTFSI and PEGFMA
into LP3 was confirmed by the presence of proton peaks
corresponding to the backbone units (a, g), the benzene ring of
the electrolyte units (b, c), and the furan ring and PEO chain
from the cross-linking units (d, e, f). To determine the
monomer composition, we used the integrated areas of the
peaks from panels (c) and (e) due to the overlap of furan and
styrene peaks for both polymers. The composition of
copolymers matched the monomer feed ratio, and we
synthesized three copolymers with a molecular weight of 10
kg mol−1, varying the mole ratio of electrolytes: 90, 70, and 50
mol % (Table 1).

The thermal stability of the synthesized copolymers was
characterized using TGA (Figure S9, Table 1). As the fraction
of cross-linking parts increased, the onset temperature of
thermal decomposition decreased. This can be attributed to
the decomposition of FMA moieties into furfuryl alcohol at
temperature ranging from 200 to 250 °C. Certain poly(FMA)
can be converted into stable poly(cyclic anhydride) com-
pounds, which remain intact up to 340 °C. Above 400 °C, the
polymer starts to be decomposed again.40 Therefore, polymers

with a higher content of FMA or PEGFMA units (L1 and
LP1) exhibited a clear two-step decomposition behavior.
3.2. Thermo-Reversibility of Lithium-Ion Conducting

Cross-Linked Polymers. Thermo-reversible cross-linked
polymers were prepared by dissolving L or LP and cross-
linkers in organic solvents and casting the solution onto a
heated plate. The formation of the DA adducts was confirmed
by their FT-IR spectra (Figure 2a). Following the addition of
bismaleimide cross-linkers, characteristic peaks were observed,
including those for the C�H bonds of C�C (700 cm−1) and
C�O carbonyl groups (1700 cm−1) in the maleimide rings
(LP3 + cross-linker).41 After the DA reaction was completed
(xLP3), new absorption peaks appeared for C−O−C ether
stretching vibrations (1070 cm−1) and C�C double bond
stretching vibrations (1774 cm−1) of the DA adduct.

Generally, there are two types of DA adducts, thermally less
stable endo and more stable exo adducts (Scheme S3), which
are thermally dissociated above 100 °C via a retro DA reaction
(rDA).42 When maleimides are used for DA reaction, the endo
form is known to be preferred due to their electron-
withdrawing effect. During the first heating cycle of xLPs, we
observed endothermic regions from 100 to 160 °C and the
center of the peak at around 120 °C, implying that endo
adducts were dominant (Figure 2b). As the molar content of
furan increased, the endothermic region expanded toward
higher temperatures. When each polymer was fully cured with
the cross-linkers, the heat of the endothermic reaction (ΔH)
for xLP3, xLP2, and xLP1 was 3.9, 10.8, and 17.3 J g−1,
respectively. Based on the ΔH value of the furan-bismaleimide
Diels−Alder reaction (43 ± 11 kJ mol−1),43 the degree of
cross-linking for xLPs was determined to be 34±4%. When
subjecting the cross-linked polymers to swell in DMF, we did
not observe any mass change, indicating that all of the cross-
linkers had successfully reacted with the terminal furan groups
(Table S1).

Solubility tests were conducted to confirm the thermo-
reversible cross-linking/de-cross-linking reactions in good
solvents for linear polymers and cross-linkers such as
dimethylformamide (Figure 2c). The cross-linked polymers
were slightly swelled in dimethylformamide at room temper-
ature but fully dissolved at temperatures above 130 °C. After
removing all of the solvents, the residual polymers were
attempted to be redissolved in dimethylformamide, but they
were unable to dissolve, indicating that the DA reaction had
proceeded. The resulting polymer exhibited reversible changes
in solubility with temperature.
3.3. Thermomechanical and Tensile Properties of xLs

and xLPs. The thermomechanical properties of xLs and xLPs
were analyzed using dynamic mechanical analyses (DMA) in
tension mode (Figure 3a,b). As the molar content of the furan-
containing monomer increased (from 3 to 1), the storage
moduli in the glassy and rubbery regions increased for both
samples. This suggests that the material became more elastic
due to the increased number of cross-linking moieties. Unlike
conventional cross-linked polymers showing constant storage
moduli in the rubbery regions,44 our polymers exhibited a
decrease in the modulus above 100 °C due to the dissociation
of cross-linking networks from the rDA reaction. Although our
cross-linked polymers undergo changes in the modulus with
temperature, their modulus values are high enough to suppress
the dendrite growth within the operation temperature for LIBs
(−20 to 60 °C).45−47 Furthermore, the storage modulus of our

Figure 1. Chemical structures of polymers synthesized in this study.
1H-NMR spectra of (a) LP3 and (b) L3.
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polymers is at least two times higher than that of PEO-based
copolymer electrolytes.48

The change in glass transition temperature (Tg) with the
comonomer type and ratio was observed by tan δ values with
temperature. The Tg values increased with the electrolytic parts
(from 1 to 3) for both xLs and xLPs. Particularly, xLPs
containing the PEO units had a lower Tg than xLs with the
same electrolyte content. This finding is consistent with the
observed trend of Tg values for homopolymers of poly-
(LISTSFI), poly(FMA), and poly(PEGFMA), which are 256,
57, and −50 °C, respectively.49−51

The stress relaxation behaviors of xLs and xLPs were
measured as a function of temperature to determine the
activation energy (Ea) of the rDA reaction (Figure 3c,d). The

relaxation time was determined by applying Maxwell’s model
when the ratio of shear modulus (G(t)) to the initial shear
modulus (G0) reached 1/e at each temperature (Figure S10).38

Then, the values of Ea of the rDA reaction were calculated
from the Arrhenius equation, resulting in 123, 113, and 92 kJ
mol−1 (xLP3, xLP2, and xLP1) and 126, 118, and 101 kJ
mol−1 (xL3, xL2, and xL1). Based on the previous literature,
polymers with a higher mobility, as indicated by those with
lower Tg and less cross-linking points, tend to facilitate the
reversible process of the DA reaction at lower temperatures
with faster rates.52 Both samples exhibited an increase in the Ea
value as the proportion of poly(LISTSFI) increased, possibly
due to reduced chain mobility resulting from higher amounts
of the polymers with a high Tg. This could impede the

Figure 2. Formation of thermo-reversible cross-linked networks. (a) FT-IR results of the single-ion conducting linear polymer (LP3, black line),
LP3 with cross-linkers immediately after mixing (before DA reaction, red line), and after the DA reaction was completed (xLP3, blue line). (b)
DSC results of xLP1, xLP2, and xLP3 during the first heating cycle. (c) Digital images of xLP3 in DMF at different temperatures.

Figure 3. Thermomechanical and tensile properties of xLs and xLPs. Storage modulus and tan δ values of (a) xLPs and (b) xLs. Arrhenius plots
obtained from τ* at different temperatures of (c) xLPs and (d) xLs. The activation energy (Ea) for the rDA reaction was calculated from a linear fit
(dashed line). Engineering stress−strain curves of (e) xLPs and (f) xLs.

ACS Applied Polymer Materials pubs.acs.org/acsapm Article

https://doi.org/10.1021/acsapm.3c01319
ACS Appl. Polym. Mater. 2023, 5, 7433−7442

7437

https://pubs.acs.org/doi/suppl/10.1021/acsapm.3c01319/suppl_file/ap3c01319_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.3c01319?fig=fig3&ref=pdf
pubs.acs.org/acsapm?ref=pdf
https://doi.org/10.1021/acsapm.3c01319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


diffusion of cross-linkers in the polymer matrix. Furthermore,
the copolymer containing PEO showed a lower Ea value than
the copolymer without PEO moieties at the same electrolyte
ratio.

The engineering stress (σ) and strain (ε) responses of xLs
and xLPs at room temperature were characterized under the
application of uniaxial tension (Figures 3e,f, S11). Despite
variations in their cross-linking density, both samples displayed
a relatively brittle behavior, which can be attributed to the
higher portion of P(LiSTFSI) with a high Tg. Our cross-linked
polymers demonstrated a tensile strength of 3 MPa, which is
comparable to poly(vinylene carbonate).53 The elongation at
break for our polymers ranged from 5 to 20%, similar to that of
poly(benzimidazole) electrolytes.11 Additionally, the brittle-
ness increased with higher furan composition due to a decrease
in the average chain length between cross-linking points.54,55

When comparing the stress−strain behaviors of xLs with xLPs,
we found that PEO units from PEGFMA did not significantly
impact the mechanical properties, despite their low Tg. We
assume that the mechanical properties of xLPs may be
reinforced by the ion−dipole interaction between lithium ions
and PEO units.56,57

3.4. Electrochemical Properties of xLs and xLPs. Ionic
conductivity was determined by measuring the bulk resistance
using electrochemical impedance spectroscopy (EIS) at
different temperatures (Figures 4a,b, S12, Table S2). Both
xLs and xLPs showed an increase in ionic conductivity as the
electrolyte content increased, which can be attributed to the
formation of well-connected ion conducting channels.58,59

Furthermore, an increase in the electrolyte content leads to a
decrease in the cross-linking part, which is beneficial for
enhancing ion mobility due to the reduction in the Tg of the
polymer.60 Among the samples, xL1 showed the lowest
conductivity of 7.8 × 10−6 and 4.0 × 10−5 S cm−1 at 40 and
80 °C, respectively. On the other hand, xLP3 exhibited the
highest conductivity of 2.4 × 10−5 and 7.1 × 10−5 S cm−1 at 40
and 80 °C, respectively. We compared the ionic conductivity of
our material with reported values from various sulfonylimide-
type SPEs at similar temperature ranges. For instance, block
copolymers composed of polysulfonyl imide and poly-
(PEGMA) exhibited an ionic conductivity of 1.0 × 10−5 S
cm−1 at 80 °C,61 while poly(ethylene oxide carbonate)-based
TFSI random copolymers demonstrated an ionic conductivity
of 2.9 × 10−5 S cm−1 at 70 °C.62 Blending perfluorinated
sulfonylimide polymers with polyethers resulted in 5 × 10−7 S

Figure 4. Electrochemical properties of xLs and xLPs. The change in ionic conductivity (ln σ) as a function of an inverse value of temperature (T)
for (a) xLPs and (b) xLs. (c) Time-dependent current polarization profile of xLP3. The inset shows EIS spectra of xLP3 before and after
polarization. (d) Linear sweep voltammetry curve of xLP1.

Figure 5. Mechanical and electrochemical properties of xLP3 after multiple reprocessing cycles. (a) Photograph of the scratched and self-healed
xLP3 film, which was coated on a glass by a solvent casting method. (b) Ionic conductivity of xLP3 at different reprocessing cycles as a function of
temperature. (c) Stress−strain curve of pristine and reprocessed xLP3. (d) Young’s modulus and (e) elongation at break (EB) of xLP3 with the
number of reprocessing cycles. Reported values and error bars represent the average and one standard deviation, respectively.
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cm−1 at 80 °C.34 PLiSTFSI-co-PEGDMA, which shares
similarities with our polymeric system, exhibited ionic
conductivities ranging from 4.00 × 10−6 to 1.00 × 10−4 S
cm−1 at 40−80 °C.63 Hence, our polymer electrolytes
demonstrate comparable ionic conducting abilities to pre-
viously reported systems. Interestingly, our polymer systems
demonstrated a relatively higher ionic conductivity at low
temperature ranges. We speculate that the bismaleimide cross-
linkers have a positive influence on the ionic conductivity.64

The ionic conductivity of xLPs is higher compared to that of
xLs at the same electrolyte content due to the facilitated
mobility of lithium ions by PEO in the polymer matrix. This is
supported by the activation energy values calculated from the
Arrhenius plot. The values of Ea of xLP3, xLP2, and xLP1 are
25.0, 28.9, and 32.8 kJ mol−1, respectively, while for xL3, xL2,
and xL1, the values are 27.0, 30.8, and 36.7 kJ mol−1,
respectively. Previous studies reported an Ea of 24.8 kJ mol−1

for a PLiSTFSI-PEGMA copolymer system,65 which is
comparable with our results.

The transference number of the lithium ion (tLi+) in the
matrix was measured by using a polarization profile with EIS
(Figures 4c, S13, Table S3). Having a high transference
number is crucial for achieving improved performance during
charging/discharging processes and minimizing concentration
polarization.66 Except for xL1, which displayed the lowest
value of 0.75, all samples have a high tLi+ close to 1.0. This high
value can be attributed to the immobilized anionic moieties,
indicating a good performance as a single-ion conductor.67 The
electrochemical stability window (ESW) of each sample was
measured by using LSV (Figure S14, Table S2). For xLP1,
which exhibited the lowest ESW compared to other samples,
there is no obvious anodic current peak until 4.6 V,
demonstrating excellent electrochemical stability (Figure 4d).
The ESW of the remaining samples ranges from 4.6 to 5.6 V.
3.5. Reprocessability of xLP3. Thermally reversible

Diels−Alder chemistry enables our synthesized polymers to
possess self-healing capabilities and reprocessability. Upon
scratching the surface of xLP3 with a sharp knife, the scratched
region was fully healed through thermal treatment at 140 °C
for 60 min (Figure 5a). Additionally, we conducted up to 30
cycles of thermal reprocessing with xLP3 and assessed both
their ionic conductivities and mechanical properties. Even after
30 cycles of thermal reprocessing, xLP3 exhibited consistent
conductivity values across different temperatures while
maintaining their Ea within the range of 24−28.0 kJ mol−1

(Figure 5b). The tensile properties of reprocessed xLP3 were
measured using DMA (Figure 5c−e). We found that the
differences in the stress−strain curves, Young’s modulus, and
elongation at break (EB) for each sample were not statistically
significant. Toughness and yield stress showed no statistical
difference as well (Figure S15).

4. CONCLUSIONS
We have successfully synthesized thermally reprocessable and
self-healing polymer electrolytes by varying the chemical
structures of furan-containing monomers and the proportion
of electrolytic components. The formation of Diels−Alder
adducts was confirmed by FT-IR, DSC, and the reversible
change in solubility with temperature. The thermomechanical
and tensile properties of the polymers were found to be
significantly influenced by cross-linking density and the
presence of PEG units in the comonomer. Due to their
single-ion conducting nature, our copolymers exhibited a high

transference number close to 1.0 with an excellent ionic
conductivity of 7.07 × 10−5 S cm−1 at 80 °C. Even after
undergoing up to 30 reprocessing cycles, these polymers
maintained their good ion conductivity as well as mechanical
properties. We envision that our self-healing and reprocessable
thermosets hold great promise as solid polymer electrolytes for
lithium-ion batteries, providing a safe and environmentally
friendly approach.
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